THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By S. S. WiLks

By applying the principle of maximum likelihood, J. Neyman and E. S.
Pearson’ have suggested a method for obtaining functions of observations for
testing what are called composite statistical hypotheses, or simply composite
hypotheses. 'The procedure is essentially as follows: A population K is assumed
in which a variate z (z may be a vector with each component representing a
variate) has a distribution function f(z, 6,, 6;, - - 6;), which depends on the
parameters 6, 62 --- 6,. A stmple hypothesis is one in which the #’s have
specified values. A set © of admissible hypotheses is considered which consists
of a set of simple hypotheses. Geometrically, @ may be represented as a
region in the k-dimensional space of the 6’s. A set w of simple hypotheses is
specified by taking all simple hypotheses of the set © for which 8; = 6y, ¢ =
m4+1,m4 2, ... h.

A random sample O, of n individuals is considered from K. O, may be
geometrically represented as a point in an n-dimensional space of the z’s. The
probability density function associated with O, is

(1) P=IIlf(xa,01’02,"'0h)

Let Pq(0O,) be the least upper bound of P for the simple hypotheses in @, and
P, (0,) the least upper bound of P for those in w. Then

_ P,(0,)
~ Pa(0,)

is defined as the likelihood ratio for testing the composite hypothesis H that
0. is from a population with a distribution characterized by values of the 6;
for some simple hypothesis in the set w. When we say that H is true, we shall
mean that O, is from some population of the set just described. In most of the
cases of any practical importance, P and its first and second derivatives with
respect to the 6; are continuous functions of the 6; almost everywhere in a certain
region of the -space for almost all possible samples 0,. We shall only consider
the case in which Pq(0,) and P,(0,) can be determined from the first and
second order derivatives with respect to the 6’s.

(2 A

1 Presented to the American Mathmatical Society, March 26, 1937.
* Phil. Trans. Roy. Soc. London, Ser. A, Vol. 231, p. 295.
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MAXIMUM LIKELIHOOD FOR TESTING COMPOSITE HYPOTHESES 61

A considerable number of currently used statistical functions for making tests
of significance can be expressed in terms of \ ratios, and in many cases involving
normal distribution theory, the exact sampling distribution of \ is known.
However, it is often useful when dealing with large samples to have an approxi-
mation to the distribution of A. We shall consider such an approximation for
those cases (which include most of the ones of any practical importance) in
which optzmum estimates of the 6’s exist. That is, we shall assume the existence
of functions 8;(z; , - - - z.)(maximum likelihood estimates of the 8;) such that®
their distribution is

Ici'li —i‘g: cijzij
(3) '("2—1'_1)—,,/2 e Tt 1+ ¢)dzy - das

2
where z; = (8; — 0.)V/n, ¢ii = —E(E%;%?), E denoting mathematical expecta-
s 00;

tion, and ¢ is of order 1/4/n and ||cij|| is positive definite. Denoting (3) by
Jdzdz; - - - dz), , and differentiating J with respect to i , we get

1/ 1 8cyl 8¢ - , ) _ ,
@ (lcul 36, Z,: % zizi + \/ank,z, J, k=1,2, h
Since ¢;; = O(1) and |ci;| # 0, it can be seen from (4) that the values of 8
which maximize J differ from 8, k = 1, 2, ... h, by terms of 01;der 1/4/n.
Therefore, the maximum Pg(0,) of J with respect to the 6; is el Gt 1 4+ ¢),

(@n)T
where ¢/ = 0(1//n).
To get P,(0,), we let 8; = 65;,4 = m + 1, m + 2, - .- h, and note that J can
be written as

“} =3 2: eijziei— x? ,
where
h
(6 Xo = _Eﬂ Cii2i%i, ¢o = O(1/4/n)
1,j=m

and || ¢i; || is the inverse of the matnx obtained by deleting the first m rows and
first m columns from || ¢;; ||™ and 2{ = 2; — L, L; being a linear function of
Bo.ms1 - - - Oon , and co:; is the value of ¢;; with 8; = 6o; , ¢ =m + 1, m + 2, ... h,
that is, when H is true. Taking the maximum P,(0.,) of expression (5) with
respect to 61, 62, --- 0., We get

v ’ 2 1" n
@ P, = [l i 4 gl o7 = 0(1/+/7)

(2r

3For conditions under which the &'s exist which are distributed according to (3), see
J. L. Doob, Probability and Statistics, Trans. Amer. Math. Soc. Vol. 36, p. 759-775.
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Hence, when H is true, we have, from (5) and (7)

_ P, u(on) _ —ixz
(8) M= By = ¢ L+ 00//m)).
Therefore, except for terms of order 1/4/7,
) —2log\ = x5 .

Now, the characteristic function of —2 log \ is

o) = B2V = / . [Joe.'t(x;w(1/\/7;))dz1 .o da
(10)

l Cii li —l' ”2‘ c;;z;:;+x:(“-—i) '
= (21;1)1./2/ T / e W7 14 0(1//n))dz --- dz.
It can be shown that on any finite interval | ¢ | < a, ¢(t) approaches uniformly,
H

as n — o, the function

an BTG - )T

But (11) is the characteristic function of any quantity distributed like x* with
h — m degrees of freedom.

We can summarize in the

Theorem: If a population with a variate z is distributed according to the probabil-
ity function f(z, 6, , 02 - - - 03), such that optimum estimates 8; of the 0; exist which
are distributed in large samples according to (3), then when the hypothesis H is
true that 6; = 60,2 = m + 1, m + 2, .- . h, the distribution of — 2 log \, where \
1s given by (2) is, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.
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