FIDUCIAL DISTRIBUTIONS IN FIDUCIAL INFERENCE*
By S. S. WiLks

1. Introduction. The essential idea involved in the method of argument
now known as fiducial argument, at least in' a very special case, seems to have
been introduced into statistical literature by E. B. Wilson [1] in connection with
the problem of inferring, from an observed relative frequency in a large sample,
the true proportion or probability p associated with a given attribute. Since
1930 the ideas and terminology surrounding the fiducial method have been
developed by R. A. Fisher [2, 3], J. Neyman [4, 5] and others into a system
for making inferences from a sample of observations about the values of param-
eters which characterize the distribution of the hypothetical population
from which the sample is assumed to have been drawn. The functional form
of the population distribution law is assumed to be known The parame-
ters may be means, a difference between means, variances, ranges, regression
coefficients, probabilities or any other descriptive indices or combinations of
indices which may be considered important in specifying the distribution
function of a population. In arguing fiducially about the value of a parameter,
a procedure applicable to some of the simple cases begins by the calculation
from the sample of an estimate of the parameter in question. The values of
the estimate in repeated samples of the same size will theoretically cluster
“near” the true value of the parameter according to a certain distribution law
which can, in general, be deduced from the functional form of the population
distribution law. If the distribution of the estimate involves only the one
parameter, and if, as is frequently the case, one can find a function ¢ of the
estimate and the parameter which has a distribution not depending on the
parameter, then one is able to set up, in a rather simple manner, fiducial limits
or a confidence interval for the parameter corresponding to the observed value
of the estimate. The limits will depend on the particular method of calculating
the estimate, the value of the estimate in the sample, and on the degree of risk
of being wrong which one is willing to take in stating that the limits will include
between them the value of the parameter for the population under consideration.
In general the smaller the degree of risk, the wider apart will be the limits.
Thus for a given pair of limits there will be an associated degree of uncertainty
that the true value of the parameter is actually included between those limits.
This uncertainty can be expressed by a probability o calculated from the
sampling distribution of the ¢ function of the parameter and estimate. Under
certain conditions, one can, by simply changing variables, obtain from the ¢
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distribution what has been termed by Fisher a fiducial distribution function of
the parameter. From the fiducial distribution and for a given value of the
estimate one can actually determine fiducial limits of the parameter corre-
sponding to a given risk a. It will be seen as we proceed that the fiducial
distribution plays no indispensable part in fiducial inference; the ¢ function
and its distribution from which the fiducial distribution is derivable, are suffi-
cient for the fiducial argument in many cases that commonly arise in statistics.
We shall discuss fiducial argument and fiducial distributions from the point of
view of ¢ functions.

2. Example. To illustrate these points let us consider an example, namely,
the problem of determining fiducial limits and the fiducial distribution of the
range of a rectangular distribution for a given value of the range in a sample
“randomly drawn” from it.

If a sample of n individuals is drawn from a population whose distribution
law is f(z, 6) = 1/6, where only values of z between 0 and 6 are considered,
(that is, a rectangular distribution having range 6) the probability that the
range r of the sample lies between r and r + dr is ¢(r, 8) dr, where

&) ol 0) = 22D gy,

Here 6 is the parameter under question, and r is the estimate; r is the difference
between the largest and smallest variate in the sample. Thus, for a given
value of 6, say 6, ¢(r, ) is a sampling distribution law defined for given
values of r on the range r = 0, tor = 6. If we let r/6 = ¢, then

2 o(r, 0) dr = n(n — 1)(1 — YW " " dy = G(¥) dy,

which, from a statistical point of view, shows that if we should take an aggre-
gate of randomly drawn samples (of n items each) from rectangular populations
and calculate ¢ for each sample-population combination, then the distribution
of ¢ will be that given in (2). By a sample-population combination in this
example we mean any rectangular population that may arise and a “randomly
drawn” sample from it. The possible values of ¥ range from 0 to 1. Thus if
Y. 1s such that

Va
B3 nmn-1) ﬁ A=y dy = a, ie. Yo l'ln—(n— Dy = q,

and if we draw a sample of n from a rectangular population, we can claim that
the probability is 1 — « that the ¢ produced by this sample-population com-
bination will satisfy the inequality

4) Yo <y <L

It should be observed that there are many pairs of numbers, say V. and v
such that we can claim that ¢, < ¢ < y., with probability 1 — « of being
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correct in making the claim. ¢, and ¢, are ordinarily chosen so that the
interval formed by them is as short as possible (or approximately so) in some
sense. Inequality (4) is equivalent to each of the following inequalities

r

5<1, T>e>r

Va

Now ¢, can be determined from (3) when n and « are given. For example,
if @ = .01 and n = 10, we find from (3) that y. = .495. For a given sample,
the fiducial limits r/y, and r can be calculated from ¢, and the sample. It
will be noticed that fiducial limits are nothing more nor less than random
variables that fluctuate from sample to sample. The interval between r and
r/¥a is called a confidence interval or fiducial interval; 1 — o« is known as the
confidence coefficient [4] associated with the limits. Hence, in repeated samples
of n from a rectangular population with range 6,, 100(1 — o) percent of the
samples will produce fiducial limits 7/y . and r which include the fixed value 6,
between them. This statement holds regardless of the value of 6,. Hence
in an aggregate of sample-population combinations, the aggregate of pairs of
fiducial limits r/y. and r will, in 100(1 — «) percent of the combinations, in-
clude between them the true value of the range of the population. Further-
more, whether there is only one rectangular population for all sample-popula-
tion combinations or many different rectangular populations, this statement
remains true, thus showing that the method of fiducial limits for inferring the
value of the parameter is independent of any a prior: distribution of rectangular
populations in an aggregate of sample-population combinations—the distribu-
tion being with respect to values of 6.

Let us look at the matter geometrically. Suppose we are drawing samples
from a rectangular population with 6 = 6,. The r for each sample is repre-
sented by a dot along Or in Figure 1; corresponding to each dot there is confi-
dence interval cutting across the V-shaped region MOR. The probability is
1 — « that a confidence interval computed from a sample from the population
having range 6, will cut the line 6, K. The cutting of 6,K by a confidence
interval is equivalent to the statement that 8, is included between the corre-
sponding fiducial limits.

From a practical statistical point of view what we have said has the following
meaning: If on each occasion in which a randomly drawn sample of n from
some rectangular population is considered, one (i) calculates the numbers /¢,
and r, and (ii) asserts that the range in the population producing the sample
lies between these two computed limits, then in about 100(1 — «) percent of
the cases assertion (i) will be correct (theoretically). Thus, in dealing with
samples of 10 individuals from rectangular populations, one would be correct
(theoretically) in about 99 percent of the cases by asserting that the population

(5) Va <

range will lie between the sample range and 2.020 (= —4—:19—5) times the sample

range. More generally, one need not use the same value of n all the way
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through, provided that for the given « one evaluates . according to (3), for
each n that arises. It will be seen from (3) that as n increases, the value
of ¥. tends to 1 and hence the fiducial limits »/¢. and r for any given sample
tend to the same value, namely the sample range, thus showing that fiducial
inferences about 6 can be made arbitrarily certain by taking sufficiently large
samples.

It is evident that the method of fiducial limits furnishes a satisfactory pro-
cedure for inferring the value of the population range 6 from samples drawn
from rectangular populations. Let us now go a step further and consider the
fiducial distribution of 6 and how it fits into the scene. The cumulative distri-
bution of y is

(6) Vn — (n = 1Y)
z
o \ L r
\\\\

é
Fia. 1

and hence the cumulative distribution of r for a fixed 6, say 6, , is

0 0 = () -0 ()]

which increases from 0 to 1 as r increases from 0 to 8. Geometrically, z =
F(r, 6) can be represented as a surface defined over the region bounded by lines
06 and OR in Figure 1, such that z is zero along O and is unity along the line
OR (r = 6). F(r, 6) is continuous inside the region OR, and for any given
value 7y % 0 of r, F(r, 6) decreases from 1 to 0 as 8 increases from r, to .
The curves having the equations

(z = F(r, 6) and {j- = F(r,9)

9 = 6o =79
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(where 6, r0, and «a are such that /8 = Y. and F(ro, 6)) = a) are the
curves C and D respectively. C is the cumulative distribution of ranges of
samples of n from a rectangular population with range 6,. The curve D has
the mathematical characteristics of a cumulative distribution function cumu-
lated in the negqtive direction with respect to 6: its ordinates increase from

0 to 1 as 0 decreases from « to 6. Thus, if we take —566 F(ry, 6) we get a

function g(8, r) which has the essential mathematical characteristics of a
distribution function: it is non-negative, can be integrated over any interval
of 0, and has total area under it equal to unity. We have

re! To
®) g0, 1) = n(n — 1) (1 - ‘é)

and it is called the fiducial distribution of 6 for r = ro. It must be firmly
pointed out that 8 is not a random variable and hence g(8, 7o) is not a distribu-
tion function of a random variable, although it has the mathematical properties
of such a distribution. Objections have been raised to the use of the term
fiducial distribution on the grounds that the thing to which it applies is not a
distribution at all. However, as long as the term is carefully defined there
should be no ambiguity in using it. From an analytical point of view, the
problem of obtaining the fiducial distribution of 8 is only a matter of changing
variables for since

9) o(r, 6) dr = g(6,7) d6 = n(n — 1)(1 — YY" " dy

and ¢, = 7/Yo, we have

(1} rolvo 1
(10) /w o(r, 6o) dr = / g(6, 1) df = / nn — (1 — YW dy =1 —a.

0 a

We remark again that

01
(11) / g(6, 7o) df

To
is mot to be interpreted as probability as though § were a random variable.
Instead, the meaning is as follows: Let 7, be the range in a sample known to
be from some rectangular population, and let the value of 7, be inserted in
(11), and let 6; be determined so that the value of the integral is 1 — a. The
two limits for the integral are fiducial limits associated with the sample for the
confidence coefficient 1 — «, which were discussed earlier. Thus, for each
sample, we can compute fiducial limits using the fiducial distribution. These
limits, as we have seen by considering the ¢ function, fluctuate from sample
to sample in such a way that the probability is 1 — « that they will include
between them the true value of the range of the population under consideration.

3. Summary of Principles. From the point of view we have taken the
essential notions involved in the method of fiducial argument and fiducial
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distributions for the case of a continuous variate and one parameter can be
readily abstracted from the example just discussed. In general, we have the
following steps:

(a) A sample is assumed to be randomly drawn from a population with a
distribution of known functional form f(z, 6), 6 being a parameter. Let
21, Z2, -+ , T, be the values of z in the sample.

(b) A function, say ¥(z1, ---, z., 0) of the sample z’s and 6 is devised so
that its sampling distribution G(¥) involves 6 and the 2’s only as they
enter into ¢. The value of 6 in ¢ is that for the population from which
the sample is actually drawn.

(¢) Two numerical values of ¥, say .. and ¥, are chosen (ordinarily as close
together as possible) so that the probability computed from G(¥) is
1 — a (e.g. 0.95) that ¢ will lie between ¢, and Y,—more briefly
Pe <¥ <¥a) =1 - a

(d) The inequality . < ¢ < ¥ which contains only one unknown, namely 6,
is solved for # giving the equivalent inequality § < 6 < 8 where 6 and 8
are fiducial limits and are subject to sampling fluctuations.

(e) The expression P(y, < ¢ < y.) = 1 — ais replaced by the equivalent
expression P(¢ < § < 8) = 1 — « which states that the probability is
1 — a that a sample will yield values § and 8 which will include the true
value of § between them.

{ay |
(f) The differential element for the fiducial distribution of 6 is G(¥) ’%g‘d()

(provided 9y/a8 is a function of 6 which does not change sign for a given
sample of 2’s) and is obtained by letting 6 be the variable in G(¥) dy,
keeping the 2’s fixed.

To give precisely the conditions under which all of these steps can be per-
formed is a technical matter which will not be considered here. It is suffi-
cient to remark that they can be performed in many cases of practical interest.
Fiducial argument can be carried on using only the first five steps without
introducing the notion of a fiducial distribution. In connection with step (a)
it should be particularly noticed that the functional form f(z, ) of the popu-
lation under question is assumed to be known and that the sample under
consideration is “randomly drawn” from the population. Thus, in applying
the theory to practical problems it is a matter of fundamental importance
that these two assumptions be valid. In cases where a sufficient amount of
data exists, it can usually be satisfactorily tested by using the x* test and other
devices, whether or not a given functional form for f(z, 6) is a valid assumption.
In cases where sufficient data do not exist for actually making such a test
justification for assuming a given function form usually has to be made on the
basis of theoretical considerations. From a practical point of view the notion
of randomness is characterized by methods of drawing samples rather than
a posterior: mathematical considerations of the sample after it has been drawn,
and thus the question of randomly drawing samples depends largely upon the
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experience and sound judgment of the experimenter. However, after one or
more samples have been drawn “at random,” the problem of arguing from
them about the populations from which they were drawn is largely mathe-
matical. '

4. Case of large samples. For a population with a distribution of known
functional form, a fiducial distribution of the parameter clearly depends on the
size of the sample and the particular estimate used. For example, in large
samples, we would get a fiducial distribution of the mean of a normal popula-
tion of known variance by using the sample mean which would be different
from the one obtained using the median of the sample. In order to be able to
make the inferences about # as accurate as possible, a ¢ function should theo-
retically be used which will produce fiducial limits which are closest together,
on the average, or perhaps ‘“best” in some other sense, for a given a. The
fiducial distribution obtainable from such a ¢ could then be referred to as the
“best” fiducial distribution, and theoretically it should be used in preference
to other possible fiducial distributions if fiducial distributions are to be used
at all to set fiducial limits. In large samples from a population with a distri-
bution function f(z, ), it is known [6] that, under rather general conditions,
fiducial limits which are closest together on the average can be obtained by
letting

@ v= G

and treating ¢ as a normally distributed variate with zero mean and unit
variance, where L = > log f(x:, 6), the logarithm of the likelihood of 8 for
=1

the given sample, 2, , #3, - - - , T, are values of z in the sample, and E denotes
mathematical expectation. For example, in the case of a binomial population
where each individual belongs either to class A or class B, we have f(x, §) =
6°(1 — 6)""" where 6 is the probability associated with class A, z will be 0 or 1
according to whether an individual belongs to B or A. In a sample of n indi-
viduals, L = m log 6 + (n — m) log (1 — 6), where m is the number of individ-

2 — nf
uals in class A. E {(M>} = sy and we get ¥ = (/Z“e(l —6)’

00 T (1 —6)’
If we should want to find fiducial limits of 6 for a confidence coefficient of .95,
m — nf

we would solve (1) the equations WI———T_T)) = +1.96 for 6, thus getting two

values of 6, say 6 and 8. We can then say that § and 8 will include the true
value of  between them with a probability of .95 of being correct, in the sense
that if we applied this rule consistently to samples from binomial populations,
we would have a procedure that would lead to a correct statement in about 95
percent of the cases (theoretically).

To illustrate the difference between the fiducial method and the commonly
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used method of placing limits on 8 for P = .95, consider an example in
which m = 150, n = 400. The usual procedure is to replace 6 by m/n in

6 + 1.96 1/ 0(1_n—0) , whieh yields .311 and .431. The fiducial procedure is

m
to solve the equation :/—nr—lt:o—) = =41.96, for 9, thus obtaining .312 and .455.

For the case of small samples, the problem of getting ‘“best” fiducial limits be-
comes more complicated [5].

5. Extensions of Fiducial Argument. It will be observed that it is not
necessary for ¥ to be a function of only one statistic and 8 in order to be able
to argue fiducially about 6. For example, if a sample of n is drawn from a
normal population with mean 6, it is well known that if & is the sample mean
then

@G0 VaE =D
= - ;
[Z (z: — 57)2]
1
(which is Fisher’s ¢ function), has the distribution

I'(3n) ay
T(3(n — 1)) Va(n — 1) [1 +¢2/(n — D>

1/

(13)

(14)

Here ¢ is a function of two statistics, namely % and > (z; — %), and the fiducial
=1

distribution of 8 for this ¥ function is obtained at once by applying rule (f).

The ideas of fiducial argument may be extended in other directions, but
these cannot be considered in any detail here. For example ¢ may be a func-
tion of 2y, - -- , z, and two or more population parameters, in which case one
could set up fiducial regions for the several parameters. From a practical
point of view, the fiducial argument for two or more parameters simultaneously,
had hardly been touched. Again ¥ may be a function of statistics from two
samples, one observed and the other not yet observed, and not involving popu-
lation parameters, at all, in which case one can argue fiducially about the
statistic in question for the unobserved sample [3]. The notion of a fiducial
distribution has been extended to several parameters taken simultaneously
[3, 71, but the problem of working out relations between fiducial distributions
of several parameters and fiducial regions is yet to be investigated. The
principles may be readily applied in situations in which the z’s involved in ¢
take on discrete values. In this case the equality signs in the probability ex-
pressions in steps (c) and (d) would be replaced by greater than or equal signs
(2). Two excellent examples of the application of principles of fiducial argu-
ment to the discrete case are furnished: (i) by a paper by Pearson and Clopper
[8] on fiducial limits of the probability P from samples from a binomial popula-
tion, and (ii) by a paper by Ricker [9] on fiducial limits of m in the Poisson
distribution f(z, m) = m'e "/x!.
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