ON TESTING THE HYPOTHESIS THAT TWO SAMPLES HAVE BEEN
DRAWN FROM A COMMON NORMAL POPULATION

By B. A. LENGYEL'

1. Introduction. This paper is devoted to the problem of testing the hypothe-
sis that two samples of 2, 3 and 4 variables, and of equal size, have been drawn
from a common unspecified nermal population. It is, in a certain sense, a
continuation of J. W. Fertig’s papers [1, 2] which were devoted to the problem
of testing the hypothesis that one or more samples of n variables have been
drawn from a completely or partially specified normal population.

For the sake of application to biological research, it is important to have
means of determining whether two samples may have come from a common
population evén if this population is unknown. Moreover, it is often imperative
to test two samples with respect to all their variables simultaneously. Much
valuable information may be lost if the variables are tested individually. One
has to consider not only the fact that two samples which differ almost signifi-
cantly from each other in each variable separately might be significantly different
if the probabilities would be combined, but one has to take account of the
possible correlations between the variables which are completely disregarded if
the tests are applied to each variable separately. It is not difficult to imagine
two samples of two variables with identical means and variances and signifi-
cantly different correlation coefficients.

J. Neyman and E. S. Pearson [3] have investigated the problem of testing sta-
tistical hypotheses in general. They have developed the method of likelihood
ratios. It is beyond the scope of the present paper to give an account of this
theory; we have to restrict ourselves to statements concerning the fundamental
concepts we are going to apply to our specific problem.

A sample with one variable and of size N can be regarded as a point in an
N-dimensional space. The acceptance or rejection of a hypothesis concerning
this sample will depend on whether or not the point representing the sample is
contained in certain critical regions determined by the hypothesis and by the
statistical criterion that is to be applied. The choice of the critical regions is of
fundamental importance; its implications have been thoroughly discussed by
Neyman and Pearson. These authors found a useful criterion for testing the
hypothesis that a sample was drawn from a specified member of an admissible
set of populations by introducing the ratio of the likelihood that the sample
was drawn from the specified population to the maximum value of the likelihood
for all populations in the admissible set. (Cf. §2). This ratio A can vary between
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0and 1. The association between values of A and the credibility of the hypothe-
sis in question is such that the greater the value of A the greater the degree of
tenability of the hypothesis. A = constant defines a surface in.the sample
space. These surfaces are the contours of the critical regions associated with
the acceptance or rejection of the hypothesis. A hypothesis is rejected as
untenable if A is so small that

A
j; PO A\ < a,

where « is some value arbitrarily small, say .01 or .05 and P(\) is the distribu-
tion of A if the hypothesis is true.

This method of testing hypotheses is evidently not restricted to one sample
with one variable, nor is it restricted to simple hypotheses. A simple hypothesis
is one which is associated with one completely specified population. A com-
posite hypothesis is one which is associated with a subset of the admissible
populations. For example, the hypothesis that a sample with n variables has
been drawn from a normal population with means a;, a2, - - - a, whatever may
be the variances and correlation coefficients is a composite hypothesis. Such is
the hypothesis that two or more samples have come from a common but un-
specified population.

The problem of several samples with one variable was discussed by Neyman
and Pearson [4, 5]; the problem of several samples with two variables by Pearson
and Wilks [6]. In another paper Wilks [7] derived formulas for A and the
moments of P(\) for the most general case of k samples of n variables. For the
sake of practical applications it is necessary to have tables for the limits of
significance of A. Such tables have been prepared for samples with one variable
by Neyman and Pearson and for completely or at least partially specified popu-
lations and more than one variable by Fertig [1, 2]. The present paper con-
tains tables for the case of 2, 3 and 4 variables and a common unspecified normal
population. Since the case of two variables has been theoretically solved by
Pearson and Wilks we shall have to compare our results with those of the above
authors who derived the distribution of P(A) but did not compute tables.

Our procedure is the following: We start with the moments of P(\) as given
by Wilks and approximate the distribution of A" by a suitable function. Then
we compute the limits of significance for this approximating function. This
procedure was originally suggested by Neyman and Pearson and was applied
with some modifications by Fertig.

§2 contains the definition of the likelihood ratio A; §3 deals with the moments
of its distribution for the case of a common unspecified population. In §4 we
introduce the approximating distribution y = Cz* (1 — ) and discuss the
determination of the parameters p and g. In §5 we give an independent deriva-
tion of the formula obtained by Pearson and Wilks for P() for the case of two
samples with two variables and compare our approximation with the exact
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formula. §6 deals with the determination of the limits of significance and con-
tains the tables. §7 is devoted to an example.

2. Definition of A. Let C, denote the probability of obtaining a given sample
from a population #. C will depend on the parameters of the population and
the data of the sample. Let Q be the set of all admissible populations and  a
subset of @ which corresponds to a certain hypothesis that is to be tested,
Intuitively one would consider a hypothesis tenable or plausible if it gives a high
probability density for the given sample if compared with other possible hypoth-
eses. Following this reasoning Neyman and Pearson defined the likelihood
of a hypothesis as the ratio of Max C, to Max C,. In the special case which

Tew . el

we propose to investigate, the populations are assumed to be normal. We wish
to test the hypothesis that two given samples have come from a common unspeci-
fied population. Hence A, the likelihood of this hypothesis, is the maximum
likelihood that the samples have come from a common normal population
divided by the maximum likelihood that the samples have come from any two
normal populations.

The value of A can be expressed by the variates of the samples by means of the
following formula [Cf. [7] p. 489]

® SN

where 8 and S, are the generalized variances® of the samples and S, is the
generalized variance of the sample obtained by pooling the two given samples.
N, is the size of the first sample, N, the size of the second. In case of equal
samples to which we shall restrict ourselves Ny = Np = N; thus
it
S

3. The Moments of the A Distribution. The distribution of A depends on the
number of variables, the number and the size of the samples and on the kind of
hypothesis that is to be tested; e.g. that the samples have come from a common
unspecified population. This distribution has been evaluated for the case of
equal samples of one and two variables and our hypothesis concerning a common
unspecified population. The general form of this distribution is still unknown
and even the known formula for two variables is not very suitable for computa-
tion. Therefore we shall follow the procedure introduced by Neyman and
Pearson [4] and we shall use the known moments of the unknown distribution

(2) k” N _

2 The generalized variance of a sample is a determinant, the elements of which are the
variances and covariances. Thus, for two variables x and y the generalized variance
S = 82S%(1 — r?); where S% and SZ denote the variances of z and y respectively, r the correla-
tion coefficient.
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function P(\) in order to construct an s\a,pproximation to P(\). For two equal
samples of n variables the moments of P(\) about the origin are [Cf. [7] p. 490]

) I,N(l+h)—z‘ ? L,(2N—i
3) Mh=2n~h£11 (F<N2—i) ) F(2N(1§h))_,-)

forh=1,2,3,....

Equation (2) readily suggests that we should compute or approximate the
distribution of AY¥ rather than that of A\. Let us denote the A-th moment
of P(\"Y) then un = My follows immediately from the definition of M, =

f A P(\)dr. Hence in order to obtain the u’s we have to replace Nk by
h in (3).

R 2 B
) F<N+2h—z) F(2N2-—z>
—_ onh
@) My =2 I.Il I,(N—i). I,(2N+2h—-i)'
2 2

This expression can be much simplified for all given values of h and n. How-
ever, there is no need for such simplification, because one has to compute the
first moments only. All higher moments can be expressed by means of the first
moments for various N’s. The dependence of us, on N is evident from (4), we
shall indicate it by writing u,(N). The ratio of two subsequent moments is

. I,<N+h+-1‘—i) ? I‘(2(N+h)—12>

(5) #h:é%) on g F(N +2h — 2) I‘(z(N ¥ hz-i- 1) — ’&)

2
= m(N + h).

Equation (5) contains an important relation of the moments. In fact from (5)
follows:

p2(N) = p(N)u(N + 1),

(6) us(N) = p(N)u(N + D)u(N + 2),

i (N) = u(N)aN + 1) - u(N + & — 1),

where the 1’s from u;(N)’s have been omitted. This last group of equations
holds for any number of variables. Thus we have to compute u(¥N) for each N,
then multiplication gives the higher moments.
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(N -2’

For* n =2, w(N) = = 1)(N Y

For n=3, u@) = 2 } N - HW —1)(N 3

(N — 2N — 4)?
(N-—1DWN-3HWN —-2(N —3)

For n = 4, p.(N) =

1N

4. Approximation of the distribution of A Following the procedure of
Neyman and Pearson we shall use the moments computed in the previous
section for the fitting of a Pearson frequency curve to the unknown distribution
P(\"™). Since 0 £ M\ < 1 it is natural to fit a frequency curve of the following
type
) y = Cz*'(1 — )7,

1 _Tlp+9
B(p,q9) T®mT()’

The first two moments are sufficient to determine the two parameters p and q.
The moments of the distribution (7) are readily computed:

where C =

@®
vy = p+1 _ » p+1
p+e¢+1 p+egp+ag+1
In general:
9 mit _ Pt h .
© 78 p+qg+h

Equation (9) corresponds to equation (5) since one can write v = v(p, q), then
(9) becomes

Vh 1(1’; q) _
(10) V:(p, P v(p + h, Q).

At first s1ght the similarity of equations (5) and (10) would suggest that one
should choose p and ¢ so that v(p + h, ¢) = u(N + h),for h = 0, 1, 2, 3,
However, this cannot be done because the equations which express the equality
of the first two moments:

(11) v(p, ) = u(N)
(12) vip+1,9) = N + 1)

3The case n = 1 is omitted here since it has been treated by Neyman and Pearson [4].
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determine p and q completely. The quantities »(p + h, ¢) can be only approz:-
mately equal to u(N + k) for A > 1. The goodness of fit may be tested by
comparing the third and fourth moments.

The advantage of equations (5) and (10) is that once p and ¢ have been
computed one does not have to compare

v =wnvp+3,9
with
us = ugu(N + 3),

but since », = uz one can compare v(p + 3, ¢) with u(N + 3). Similarly the
comparison of the fourth moments can be replaced by comparing »(p + 4, ¢)
with u(N + 4). It has to be remembered that once the sequenceof u(N)’s has
been computed for all N’s, each of its terms can be used four times in the deter-
mination and the checking of p’s and ¢’s.

The general procedure for the determination of p and ¢ is to compute the
w(N)’s first and then solve the equations (11) and (12): i.e.

(13) m = u(),

(14) e — W+ D,
The solution of these equations is:

16) o= -1]r

As N increases u(N) approaches 1 from below; u(N + 1) — u(N) will be very
small. E.g., for n = 2 as N varies from 30 to 50 ux(XN) increases from .9164
to .9499. It is easily seen that small errors in g may produce much larger errors
in p and ¢. For n = 4 it was necessary to compute x to nine decimal places
to get p and ¢ to three decimal places accurately. For n = 2 equations (13) and
(14) become ~

P _ N -2
(a7) P te WD -9’

p+1 _ W-1)
(18) P+ (F1 - NNTD

These can be solved explicitly

19 p=o-n[1- o)
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4.5
(20) 9= 25+ G on Ty

The last two equations enable us to compute p and q directly and thus avoid the
more laborious computation by means of the u(N)’s. Forn = 3 and 4, however,
such a short cut was not found. The computation of u’s for n = 4 was facili-
tated by the following relation:

N -4

(21) w(N) = u(N) .
(N —-2)(N -3

where the suffices denote the number of variables in the problem to which the
w's refer. Thus the computed values of ;u(N) were again used. Eight-place
logarithms were used in the computation of su(N) from the formula at the
end of §3.

5. The distribution of A" for two variables. For two variables it is possible
to evaluate the distribution of A" or some other suitable power of A directly
from the moments. Pearson and Wilks (Cf. [6] pp. 364-368) derived the
distribution of A*¥ for this case. Their method was adapted to the treatment. of
more general problems than ours. It is possible to derive the distribution of
AYY in our special case more directly:

For n = 2 the moments of A" are:

i i G ) | N O Y

(22) py = 2% F< r(N_l)I‘(N_ ) ITN+h—-HTN+h-1)

2 2
h=1,23,..-.
Applying the following transformation formula®
(23) PTG + B = YT
to

a=3WN+hr-2), 2 = 3N — 2), 23=N—1 and zzs=N+h—1
(22)becomes\

_oan|[TWN+h—2)T Tr@N -2
(24) bn = 2%[ T(N — 2) ] T2N + 2k — 2)°
Thus pa is of the form F(N + h)/F(N) with
_oen TN —2)°
F(N) = 2 TGN =9

4 Cf. Whittaker and Watson. Modern Analysis, 4th ed., p. 240.
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Our problem is to find a function P(f) such that
1
(25) dn = f " P(1) di,
0

forh=0,1,2 ..

This problem is solved if we can find a function of N and ¢, say, p(N, t) such
that

(26) F(N+h) = fo l *p(N, t) dt

forh =0,1,2,....

N and & enter the left side of equation (26) symmetrically. The same must be
true for the right side. Hence p(XN, t) must have the form ¢"f(t) where f(t) is
independent of N. If then (26) is satisfied for all ¥ and k = 0, it is also satisfied
for all N and all A.

Let us now examine F(N). Applying again the transformation (23) we can
bring it to the form:

TV =2)v/zr _ o TN —2TE)
(N -3\ -2 (N —2)T(N - %)

4

2
—N—QB(N_&%)'

Now B(N — 2, §) can be represented as an integral of the desired type

F(N) = 2°
@7

1
(28) BV —2,9) = [ 70 - du

0
We set p(N, &) = 2t"g(t) and seek to determine g(¢) so that (26) will be satis-
fied for all N and for h = 0: i.e.,

2‘

N-2
An integration by parts with g(1) = 0 gives

(29) F(N) = B(N —2,%) =2 ‘/; l t" g dt.

- 24 2‘ ! N-2 ¢
(30) N_2B(N'2’%)=—N—2];t g'(2) dt.

This equation evidently holds for all N if and only if
@1 ') = V-1t
This differential equation is readily solved by the substitution of ¥y = 1 — &

In fact it becomes

dg(y)_ 21/2 _ 2 4, 6 .
(32) —Jy———l_y2—2ly +y'+y + -0l
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Hence

1+y [ 14++v1-2 ]
33 =1 -2y =2log—"Y_-""—1-¢|.
(33) g=logy— —% 8

The complete solution for the distribution function is

(34) dP@) = EWE‘L([ZI']\(,]V—;};)]; e [log H-—\/___ 'tl_tz -1 tz] dt

with ¢ = A" in accordance with the formula of Pearson and Wilks." Integration
by parts gives

TN — 2)
FNST(N — DI(N — 9)°

/ t
{t”"[log ltvi-&_ Vi-t#+1} f y”"\/'f“:_ydy}.
N 0
One can use this last equation to determine the limits of significance. How-
ever, this was not done when the tables of this paper were computed. The
approximation of the distribution function by the function described in equation
(7) was deemed sufficient and the use of the tables of the incomplete beta function
greatly facilitated the computation.

In concluding this section we wish to demonstrate the goodness of approxima-
tion of the exact distribution function by a function of the type C#*~'(1 — #)**
with p and ¢ given by equations (19) and (20).

For small values of ¢ the shape of the curve is determined by the exponent of
t, which is exactly N — 3 for the distribution function and nearly N — 3 — §
for the approximating function. For large ¢; i.e., small 1 — ¢, the exponent of
(1 — ¢) is the determining factor. By (32) we have

Y _pl
a(\/ft“t)=2[(l LA L +]

or approximately $(1 — )!. For the approximating curveq — 1 = § 4+ O(1/N?)
which is even better agreement. It is easily seen that the goodness of approxi-
mation increases with N.

PO < t) =

(35)

6. Determination of the Levels of Significance. The final task was to com-
pute the values:of z which satisfy the equations:

Iz(l’; Q) = B—(;—,Q) -/; trl(l - t)q-ldt = a,

with & = .01 and @ = .05. This was done by interpolation in the Tables of the
Incomplete Beta Function [8]. In these tables the argument z increases by steps
of .01. A value z, was determined by inspection, so that I.,(p, ¢) < « but
I.,(p, 9 > a where z; = zo + .01. The values of I.,(p, ¢) and I.,(p, ¢) were

5 Cf. [6] p. 368 Equation 60. (I* = ¢).
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determined by interpolation with respect to p and ¢, using the two-dimensional
Everett formula, neglecting fourth and higher differences. z was then deter-
mined by linear interpolation. It is worth while to mention that the terms of
second order in Everett’s formula decreased quite rapidly as N increased. Once
this was noticed some labor has been saved by not computing the terms of
second order for values of N between 30 and 50 but by estimating the second
order terms from those obtained for N = 30, 40 and 50.

Levels of Significance of N

2 3 4
Saslir;;;le Variables Variables . Variables

N 1% 5% 1% 5% 1% 5%
10 .395 .507 .238 .328 .122 .184
11 .437 .546 .282 .374 .153 ..217
12 .475 .579 .323 .414 .198 .270
13 .508 .610 .360 .451 .233 .308
14 .537 .634 .393 .483 .267 .343
15 .563 .656 .423 .512 .298 .375
16 .586 .676 .451 .537 .328 .405
17 .607 .694 .476 .561 .355 .432
18 .626 710 .500 .582 .380 .456
19 .644 724 .521 .601 .404 .479
20 .660 737 .541 .619 .426 .501
22 .687 .760 .576 .650 .466 .538
24 711 779 .606 .676 .501 571
26 .731 .795 .632 .699 .532 .599
28 .749 .809 .655 .719 .560 .624
30 .765 .821 .675 .736 .584 .646
32 778 .832 .694 .752 .606 .666
34 .791 .842 .710 .765 .626 .683
36 . .802 .850 724 778 .644 .700
38 .811 .858 | .738 .789 .660 .714
40 .820 .865 750 .799 .676 727
42 .828 .871 .761 .808 .689 .739
44 .836 877 771 .816 .702 .750
46 .843 .882 .780 .824 713 .760
48 .849 .887 .789 .831 724 .769
.50 .854 .891 .796 .837 .734 773
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7. An Example. The problem chosen to illustrate the use of the tables is
taken from a study on insulin-treated schizophrenic patients of the Worcester
State Hospital. It was attempted to differentiate between those patients who
recovered after treatment and those who did not recover. Blood constituents
and blood pressure were determined among other variables.

The variables in this example are designated as £ = blood phosphorus, y =
cholesterol in mg./100 cc., z = blood pressure in mm. Hg. The statistics for the
10 “recovered’’ patients are:

S2= 2222 S = 376.50 S = 51.97

eS8, = —1.121 rnsS:8; = —8.217 resS,S; = 12.51
For “not-recovered” 10 patients )
8: = 3.120 S = 816.19 87 = 96.32

11288, = 26.23 rsS.8; = 2.92 88, 8: = 65.78
For the total group of 20

S = 3.034 Sy = 609.02 S; = 83.09
mS,S, = 1041 rlaSzS‘ = -—.845 TszyS, = 15.99
These values give for the sample variances 17,462; 168,628 ; and 143,904, respec-
tively.
Hence

10 _ '\/17,462 X 168,628 —
A 143,004 377.

The 5% limit of significance is .328, hence the two groups do not differ signifi-
cantly from each other.
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