A METHOD FOR RECURRENT COMPUTATION OF ALL THE
PRINCIPAL MINORS OF A DETERMINANT, AND ITS
APPLICATION IN CONFLUENCE ANALYSIS

By Orav REIERs@L

1. Recurrent computation of all the principal minors of a determinant.
The formulae which I develop in this paper have been worked out for use in
statistical confluence analysis. By means of recurrent computation they shorten
considerably the amount of work required to compute all principal minors of a
square matrix. Originally I elaborated this method as a simplification of one
given by Frisch (not published).

Subsequently I found that the method could more easily be deduced from the
pivotal method. This method has been described, for example, by Whittaker
and Robinson [5] and by Aitken [1].

Let us consider a square n-rowed matrix

lan a2 «+- ain

(1) G211 Qg2 -+ gn

Let the adjoint of this matrix be || p:; || and let us denote its determinant
value by Dis...n .
Then we have the following identity

Pn—in—1 Pn-1n

(2) = Dl?...nDlz...n—zo

pn,n—l pn,n

As Aitken points out, the pivotal method is based upon this identity.
Next consider the following matrix which is formed from the matrix (1) by
striking out the nth row and the (» — 1)th column:

(3) An-21 °*++ Qn2n-2 QAn-2n|"

An-11 *°- an—l,n—2 an—l,n
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Let us denote its adjoint by || ¢; ||, its determinant value by Aiz.... = —Pn-1,n -
The determinant

an cee O1,n—2 a1,n—1

eeeseevescscccccccccsccsccce

On-31 **° On2n-2 Gn-2:n-1 = —Dnn-,
Qn,1 eee Qpn2 CQin,n—1

we shall denote by Bis...n .
The identity (2) can now be written

DIS. con—2,n Dm. con—2n-1 — Am. een Bl2~ oo

(2’) Dlz. con —

Dige-on—s
If we apply the identity (2) to the matrix (3) we get

Qn—2,n—2 qn-2:n-1
= Alﬁ. ven Du. con—8

gn-1,n—2 Qn-1,n-1
which may also be written

Ass...nsn-1Di2...n2 — Ars...n 802 Br2...n1
Dl2' c'n-3

(4) Alﬁ. ven =

To simplify the notation we will not write the affixes present, but write the
affixes not present in inverted parentheses. Then our formulae (2) and (4)
can be written

D= D),,.](D)u( - AB,

Dyn-1.n¢
A= A)W—S(D)n—l.n( - A)u—-l(B)ﬁ(

D)n—s,n—l.n(
In an analogous way we get

B = BrnaDyn-tn¢ = BynscAimc

Dyn—2,n—1,n(

We may apply these formulae to an arbitrary principal minor Dy s,...0; -
Let us now denote D,,s,...,, by D and denote the absence of one or more of the
numbers v;, 2, - - - % by placing them into inverted parentheses. We then
have the formulae:

A = Doy Drvpormn = Ayo—y(Byor
- ’

(5a)
D)’k—t"b-l.vk(

(5b) B = B)vk-z(D)vk-hw,( - B),b_l(A),k( ’
D)’k-tﬁ’k-hvk(

(5¢) D= D)"k—l(D)vk( - AB.

D)vk—nn(
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By means of these formulae we can recurrently compute all principal minors.
We begin with D; = ai;,42 =1, 2 ... n, A;; = aij, Bi; = a;;, where i < j.
Then we compute the D’s with two affixes,

D:j = DiD; — Ai;Bi;,
and then the quantities A, B, D with three affixes,
Aijk = AikDi - At'kBii
Bt'ik = BjkDi - Bt'kAt'i

D Dij — Aujn Biji
D; ’

Then we compute the quantities A, B, D with four affixes, and so on.

If we carry through the computations without dropping any figures we have
as a control that all divisions will be exact without remainder. If we are
dropping figures we can control the result by computing the determinant
Dss..., in another way. If we wish to control the computation before it is com-
pleted, we may use our recurrence formulae on the matrix which we get from
the original matrix when the rows and the columns are subjected to the same
permutation. For example we can reverse the order of the rows and columns.
Then we can control the (¢ — 1) rowed minors before computing the k-rowed
minors.

If all the D’s are different from zero, we may reduce the necessary number of
multiplications and divisions in the following way. We introduce the following
notations:

Dijx, = 1<j<k.

D
d=
Dyoy(
D)c,,-l.vk( D)"k—l-'k(
c= — .
dyox(

Substituting in (5), we get the following system of recurrence formulae:

(6a) 0 = Byopoy( + Byopm1(Orui(
(6b) b = byor—a( + Hor(Orp—c
; b
{6¢) ¢c= —

d)‘?k(
(Gd) d= d)vk—n( + ac

(68) D = D)"ﬁ(d'
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An affix v, on a letter indicates the deletion of the last row and column in the
determinants making up the definition of that letter, even though those deter-
minants are of lower order than v, . Similarly, an affix v;,_; indicates the dele-
tion of the next to the last row and column.

The o’s with two affixes in these formulae are identical with the elements a;;
of the matrix (1) where ¢ < j. Further, b;; = a;;,¢? < j,d; = a:;. Applying
the recurrence formulae (6) we start with these values.

If the matrix (1) is symmetric, i.e. if a;; = a;;, then we get

Bple...uk = A”l"x""’k
and
bvlpz...pk = a.,l,,z....,,, .

In this case we can therefore replace B by 4 in the formulae (5) and replace b

by a in the formulae (6).
Numerical example. Let us compute all the scatterances in the constructed
example given by Frisch, [3, p. 121]. The correlation matrix in this example is:

1.000000 —0.121551 0.656809 0.752502 —0.224549
—0.121551 1.000000 0.657698 —0.732862 0.212165
0.656809 0.657698 1.000000 0.014385 —0.040183
0.752502 —0.732862 0.014385 1.000000 —0.280223
—0.224549 0.212165 —0.040183 —0.280223 1.000000
Using our recurrence formulae (6) we get the following table:
a c d D

12 —0.121 551 0.121 551 0.985 225 0.985 225

13 0.656 809 —0.656 809 0.568 602  0.568 602

23 0.657 698 —0.657 698 0.567 433 0.567 433

14 0.752 502 —0.752 502  0.433 741 0.433 741

24 —0.732 862 0.732 862  0.462 913 0.462 913

34 0.014 385 —0.014 385 0.999 793 0.999 793

15 —0.224 549 0.224 549 0.949 578 0.949 578

25 0.212 165 —0.212 165 0.954 986 0.954 986

35 —0.040 183 0.040 183 0.998 385 0.998 385

45 —0.280 223 0.280 223 0.921 475  0.921 475

123 0.737 534 —0.748 594 0.016 489 0.016 245

124 —0.641 395 0.651 014 0.016 184 0.015 945

134 —0.479 865 0.843 938 0.028 765 '0.016 356

234 0.496 387 —0.874 794 0.028 677 0.016 272

125 0.184 871 —0.187 643. 0.914 888 0.901 371

135 0.107 303 —0.188 714  0.929 328  0.528 418

235 —0.179 723 0.316 730  0.898 062  0.509 590

145 —0.111 249 0.256 487 0.921 044 0.399 495
245 —0.124 735 0.269 457 0.921 272  0.426 516
345 —0.279 645 0.279 703 0.920 167 0.919 977
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a c d D
1234 0.000 279 —0.016 6 0.016 179 0.000 262 83
1235 —0.031 090 1.885 5 0.856 268 0.013 910
1245 0.009 105 —0.562 6 0.909 766 0.014 506
1345 —0.020 692 0.719 35 0.914 443 0.014 957
2345 0.032 486 —1.132 8 0.861 262 0.014 014
12345 0.009 621 —0.594 7 0.850 546 0.000 223 55

2. Computation of the coefficients of the characteristic polynomial of a
matrix. The characteristic polynomial of the matrix (1) is

an — N a2 Q1n
PQ) =| O=a az — A Qzn
Qn1 Qn2 Ann — 7\
= Po — Paoh + PooX' — oo 4 (= D™V,

As is well known, the coefficient P, can be calculated as the sum of all the
k-rowed principal minors of the matrix (1). Our method of computing all the
principal minors of a matrix therefore gives us as a by-product a method of
computing the coefficients of the characteristic polynomial. Another method
for the determination of these coefficients has been given by Paul Horst [4].

We may obtain a comparison between the work of computation entailed by
the two methods by calculating the number of multiplications and divisions
necessary when using one or the other method. If our recurrence formulae (6)
are used, two multiplications and one division are necessary for computing a
2-rowed minor, and 4 multiplications and one division for every minor with 3
or more rows. Consequently the total number of multiplications and divisions

will be:
_aofn = (n
S, = 3(2> + 5k§=:3<k)

= 5.2" — (n® + 4n + 5).

On using Horst’s method, the number of necessary multiplications and divi-
sions will be found to be

H,= (3n — n' + 3n* + 3(n — 1)(n + 2)
H,=13in—- 1)@+ n+2) n even,

H,o=in—-1D@4+n"4+n+2) n odd.
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When n = 2,3, ... 12, S, and H, acquire the following values:

n Sn Hn
2 3 6
3 14 41
4 43 1056
5 110 314
6 255 560
7 558 1203
8 1179 1827
9 2438 3284
10 4975 4554
11 10070 7325
12 20283 9581

We see that our method of computing the coefficients of the characteristic
polynomial involves less calculation when n < 10, while Horst’s method is su-
perior when n = 10.

If our purpose is to find the characteristic roots of the matrix we can do this
with less amount of computation without first finding the coefficients of the char-
acteristic polynomial. See Aitken, [2].

3. Applications in confluence analysis. The confluence analysis of Frisch is
set forth in his book: ‘‘Statistical Confluence Analysis by Means of Complete
Regression Systems,” [3].

The main method of this book is the “bunch analysis,”” which includes the
computation of the adjoints of the correlation matrices of all sets of variates
contained in the total set. In section 1, Frisch has described a preliminary
analysis by means of scatterances. The scatterances are the principal minors
of the correlation matrix of the total set of variates. If we carry through such
an analysis, the recurrence formulae of section 1 of this paper will give a rapid
method for the calculation of all the scatterances.

Another application of the computation of all the scatterances arises in the
determination of the correct time lags between variates in a structural equation.
This problem will be treated in a paper on confluence analysis which will appear
in the near future.
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