A METHOD FOR MINIMIZING THE SUM OF ABSOLUTE VALUES
OF DEVIATIONS

By RoBERT R. SINGLETON

1. Introduction. In the Philosophical Magazine, 7th series, May 1930, E. C.
Rhodes described a method of computation for the estimation of parameters
by minimizing the sum of absolute values of deviations. His is an iterative
and recursive method, in the following sense. There is a direct method for
minimization with one parameter. Assuming a method for minimization with
n — 1 parameters, Rhodes imposes a relation between the » parameters (in an
n-parameter problem) and finds a restricted minimum by the method for n — 1
parameters. In this sense his method is recursive. He then repeats the process,
by imposing on the n parameters a new relation determined by the restricted
minimum. In this sense his method is iterative. The process is finite, ending
when a restricted minimum immediately succeeds itself, indicating a true
minimum.

Rhodes’ paper presents the method without proof. The purpose of the
present paper is to analyze the sifuation in detail sufficient to indicate proofs
for various methods, and to present a new method which reduces the labor of
solution by eliminating the recursive feature. The iterative approach is re-
tained. The solution of Rhodes’ illustrative problem will be given for com-
parison between the two methods.

The paper uses geometric terminology and develops to quite an extent the
geometry of a surface representing the summed absolute deviations. This
seems the clearest means of presenting the relationships. Further analysis of
the properties of this surface should lead to an even more direct method for
attaining the minimum than the one here presented.

In the writing of the paper, no attention has been given to sets of observa-
tions or equations among which a linear dependence may exist. In practice,
such a situation almost never occurs. If the need arises, the adjustments
which must be made to take care of dependence are in each case fairly obvious.

2. Geometric Analogue of Summed Absolute Deviations. Let n observa-
tions on » + 1 variates be represented by & , ¥° where 1 = 1, ... ,n; a =
1, - .-, » Unless otherwise noted, latin indices have range 1 to n, greek indices,
1 to ». The summation convention of tensor analysis is used.

" The variates are to be statistically related by the linear function'

At

L1
Y = ZalU ,

1 This includes the linear function with a constant, since a variate x* = 1 may be used.
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¢° being an estimate of y°. u* are to be determined $o that v = ;| ¢* — y*|
is a minimum. Set

(1) o' = zhu® — ¢
and determine functions e’(u®) so that e'v’ > 0, and | ¢’ | = 1. It is immaterial

that ¢’ is not uniquely determined when u® satisfies »* = 0. Then v = Z;e%°
is to be minimized. Using (1),

2) v = zu" — Yy
where
Ty = Z;e‘x&, Yy = Eae‘y".

Consider a Euclidean (v + 1)-space, E,41, with coordinates o', - - , u’, v.
The coordinate hyperplane perpendicular to the v-axis will be called E,. In
E, 1 each of equations (1) for a particular ¢ represents a v-plane which intersects
E,in a (v — 1)-plane when +* = 0. Each of the equations

(3) v = ef(zhu® — ¢

represents two half-planes which touch E, and each other along the (v — 1)-
plane given in E, by the equation
4) chu® —y' = 0.

The functions on the right-hand side of (3) are thus continuous everywhere,
and linear in any neighborhood of E, none of whose points satisfies (4). Since
a sum of functions continuous and linear in a neighborhood is also continuous
and linear in that neighborhood, it follows that the function on the right in (2)
is continuous for all 4, and linear for every neighborhood of E, containing no
points which satisfy (4) for any 7. Hence

OBSERVATION I: The surface (8) given in E,.y by (2) consists of portions of
v-planes joined together. The projection of these joins on E, forms a network of
(v — 1)-planes determined in E, by equations (4).

3. Existence of a Minimum. Define a “bend of degree r on S” to be the
locus of all points on S whose u-coordinates satisfy a set of r independent
equations of (4). To each set of r independent equations corresponds a unique
bend of degree r.

If a linear relation 4 = a;\ + b ¢ = 1, ..., u < », rank (a;) = p, is
imposed on u° all the preceding development, reduced in dimension, applies
to the new variates zhal , y* — zhb"

OBSERVATION II: A section of S by a plane of any dimension d < v has all
the properties of an S-surface of dimension d.

Since any set of consistent equations selected from (4) determines such a
linear relation for u”, the application of Observation I to any of the bends of S
shows that each r-bend consists of linear elements of dimension » — 7, joined



MINIMIZING SUM OF ABSOLUTE DEVIATIONS 303

at points which lie on linear elements of lesser dimension. Thus S is a poly-
hedron. Its faces we term complexes of dimension », C,, and the linear ele-
ments of its edges which lie wholly in bends of degree r, but not of degree r 4 1
are complexes C,_, of dimension » — r. The boundary of any C., o > 0,
consists of complexes of lesser dimension. The term complex is not restricted
to either open or closed complexes.

Since the function »(u") of (2) is non-negative, it possesses a greatest lower
bound (g.l.b.) g. Since for some number & > g, there exists an N such that
for all | u®| > N, v(u™) > h, it follows that for some closed neighborhood of E,
the g.l.b. of v is g. Since v is continuous everywhere it attains its g.l.b., and
so S has minimum points. Since the minimum of any complex not parallel
to E, , lies on its boundary, and the boundary consists of complexes, it follows
that the minimum points of S consist of Cy’s and/or entire complexes of dimen-
sion > 0 which are parallel to E,. The next section will show that S has a
unique minimum complex (including of course its boundary complexes) and
furthermore is cup-shaped.

F1e. 1

4. Convexity Property; Uniqueness of the Minimum. Consider » = 1 in
the preceding treatment (and for convenience not written). S looks generally
like Fig. 1. The slope changes only where an equation of (4) has a root. Sup-
pose the point is uy, and z'up — ' = 0. From (3), since »* > 0, it follows
that e'2! < 0 for v < ug, €'z" > 0 for u > uy. Since in (2) z = Ze'z’, and
since for h sufficiently small and wo — h < u < up + h the only ¢ to change
value® is ¢!, we have that

z(w) + 2| e's’ | = z(up)
where
U —h <w <u <upg <u+ bk

Hence the slope is a monotonic increasing step function. Since for u suffi-
ciently small all ¢’z* < 0, and for u sufficiently large all ¢’z* > 0, at some inter-
mediate point or points either the slope is zero or it changes from negative to

2 The ¢’s corresponding to equations proportional to equation (1) also change value at z,.
This does not destroy the argument.
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positive without becoming zero. In the first case a single closed C; is the
minimum complex; in the second, a Cy. In either case the curve given by (2)
when » = 1 is concave upward and has just one minimum complex, except for
complexes of lesser dimension constituting the boundary of this complex. An
obvious consequence is

LemMA 1. The set of points u for which v s less than some number N form a
convex point set.

This result is easily extended to the general dimension ». If for any two
points uy , us of E,, v(w;) < N and v(uz) < N, the plane in E,, given by u® =
uf + Mus — uf) makes a one-dimensional section of S. By Observation II,
the points u lying on the projection of this section on E, have the property of
Lemma I and of course lie on the straight line joining «; and .. This is the
property required for a convex point set. Hence

TuroreM 1. The set of points u® of E, for which v(u®) as given by (2) is less
than a fired quantity form a convex point set.

From this it follows immediately that there is a unique minimum complex.
It is appropriate here to point out that no two complexes can be contained in a
single plane of the same dimension. This follows from the equation giving
monotonicity of slope in one dimension, and Observation II.

b. Gradient Directions. From here on the treatment will be of » as a function
defined on E, , and the equations will represent objects in E, , unless otherwise
stated. Complex and Bend also will refer to the projections on E, of the com-
plexes and bends of S. For a single-valued function defined on E, the gradient
at a point is the projection of a normal to the surface representing the function
in E,;1. If the function is defined only over a subspace of E, possessing deriva-
tives, the gradient will be required also to be tangent to the subspace. This is
sufficient to determine a unique direction, and preserves the property that for an
infinitesimal displacement in any direction the value of the function decreases
most rapidly in the direction of the gradient. Here gradient is taken negative
to its usual sense.

A point u lying on a C, but not on a C,_; will have a gradient in C; and also
in each higher-dimensional complex on whose boundary C, lies. If the gradient
for u as a point of C,4 points into C,4+ (remembering that u lies on the boundary)
this will be called a usable gradient. In the case of the greatest k for which
there exists a usable gradient, there exists but one C,4 providing such a gradient,
and that gradient is the “best’” gradient; that is, of all directions in E, it pro-
vides the direction of most rapid decrease of the function ». This follows from
Theorem I. Furthermore, all complexes of lesser dimension providing usable
gradients lie on the boundary of this Cryx. In fact

TureoreM II. If for a point u on C, , two complexes C, and C.,s > r, lying
in different bends of degree v — s but incident at C, , both provide usable gradients
for w, then the complex Csy1 on whose boundary e both Cs and C. also provides a
usable gradient for u.
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This follows from Theorem I. Select u; on the gradient in C,, us on the
gradient in C, , for which v(u;) = v(us). The join of u; and us lies in Coy1,
and for some point, us on this join, v(us) is less than »(u;) = v(uz). Also, the
distance uu; is less than at least one of wu; , uuz . Hence C,41 must contain a
usable gradient.

6. Selection of Best Gradient at Bends. The direction of the gradient for a
point u, considered as lying on a C, is given by

(6)) 9° = —Zalte) = —Zie*(uo)zk.

If uo lies in the interior of a face, this is unique. If u, lies in a bend, so that
some ¢’ are not determined, the g* for each face is found by selecting the indeter-
minate ¢’s as +1 or —1, according to the face being considered.

For a point 4y considered as lying on a bend of degree r, given by r inde-
pendent equations of (4):

(6) ztzua_y)‘:O) (A= 1,--~,T),

the gradient for a particular C,—,, determiped by the conditions at the begin-
ning of section 5, is

) g" = Zukr — e
where k) satisfies

ZaTaZoln = Zalh Za, w=1...,7)
and z, is as given in (2), the choice of sign for the indeterminate ¢
(A =1, ...,7) being immaterial. They may, in fact, be taken as 0 in this

instance.

For a point ug lying on an r-bend given by (6), to determine which complex
contains the best gradient, each (r — 1)-bend incident on the r-bend at u, is
tested for a usable gradient. Theorem II then determines the complex con-
taining the best gradient.

There are 2r such complexes incident at u, , given by the r sets of equations
selected from (6):

@=1,-- , A= LA+1,.,7)
(k = 1’ o e ,7‘).

The two complexes lying in the same (r — 1)-bend have the same equations in
(8), but are distinguished later by €"(uo) for the omitted equation being taken

first +1, then —1.
The gradient for the Ath pair of complexes is

8) AN:azou"— 9y =0

g: = x:xkv — Tq

similar to (7), but not identical. Faor ¢ = +1 in determining ., we have
g%, and for ¢ = —1, gf.. We restrict the consideration to ¢' = +1.
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The line in the direction of greatest slope is then
u* = ug +'g{'+ i
Now u is here considered lying on the complex given by (8\) with ¢ = +1.
In order that gx; point into this face, the deviation for the Ath observation
must exceed 0 when ¢ > 0; otherwise, for a displacement in the direction of gy ,

¢* changes sign immediately and the course is in the other complex. This
deviation is

= 2t — o = dud — o + gt = ot
Had gx_ been used, this deviation must be less than 0. Hence a necessary and

sufficient condition that a complex given by (8) with either choice of ¢* possess
a usable gradient is

9 &)\ = & [Zathalhe — Zathta] > 0.

For r = 1 the condition is given by (9) with the first sum merely omitted.
&), and &,_ cannot both exceed 0.

When all sets of equations (8\) are tested by (9) the equations common to
all sets possessing a usable gradient determine the complex with the best
gradient, retaining the values of ¢ for which (9) was satisfied.

7. Property of the Minimum Point. For a minimum point, given by (6)
with r = », all &, must be negative. Define X = 32822 and X = 3202,
for convenience. Then in (9), the numbers &k, , —1 are seen from their defini-
tion in (7) to be proportional to the cofactors of the Ath row of the matrix
(X*, X*°), u having the same range as \. Thus &, = ¢ Det (X*, X%’), and
&, = —c Det (X*, X*°), where in the first case X*’ is determined with ¢* = +1,
in the second with ¢ = —1. The factor of proportionality, ¢, must be the
same since X* is unaffected by change of ¢'. Now let X* = Z.r%zs where
z = Ziz" | the range of k omitting the range of A. Then

&y = ¢ [Det (X*, X*) + Det (X*, X*)]
and
& = —c [Det (X*, X*) — Det (X*, X*M)].
Hence
&y = —c” {[Det (X*, X*)I' — [Det (X*, X*)I'}.

Now let A represent the square matrix (zx), a giving the rows and A the columns.
Let By represent the matrix formed from A by replacing the Ath column by Tu.
Then

—c* [Det? (A’B)) — Det’ (4'4)]
—c* Det’ A (Det® By, — Det? A)

NN
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and this will have the same sign as
¥, = | Det (4) | — | Det (By) |-

Since &4 and ®\_ are never both positive, and at the minimum are both nega-
tive for all A, at the minimum all ¥, > 0. To determine all ¥, together, let,
in matrix notation, 2 = (21, ---,%) and z¥ = (a1, ..., z,) where z were
defined previously. Determine z as the solution of Az = z*. Then | Det (B)) |
are equal to | z:|| Det (4) |. Hence a necessary and sufficient condition that
¥, > 0 for all A is that all | zx | be less than one. Hence

TueoreM II1: If a zero-complex is given by a set of equations whose tmatrix is M,
a necessary and sufficient condition that the complex be a unigue minimum is that
the solutions of M'z = x* be all less than one in absolute value. If k of the solu-
tions are equal to one in absolute value, and the rest are less than one, the mintmum
s a complex of dimension k with the zero-complex as one of its corners.

The last statement follows since if one solution is 1 in absolute value, a
corresponding &, = 0, and hence no gradient, usable or not, exists. Thus the
corresponding complex is parallel to E, .

8. Minimization for One Dimension. A method for minimization of (2) when
there is just one parameter evolves from the monotonicity of slope in that case.
Suppose the variates are w* and 2°, and (1) is

(10) v = w't — 2.
Suppose the variates are arranged in order of 2'/w’, starting with the smallest.
The slope of the rth segment (Fig. 1) from the left is

le‘l - > W

gl $=r+1
The minimum occurs when the slope is 0 or changes from negative to positive;
that is, when the first sum equals or exceeds the second; or when the first sum
equals or exceeds half the total. This is a standard computation. If the
change takes place when r = k, then t = 2°/u* is the value of ¢ giving the
minimum,

9. Mimimization Procedure for » + 1 Dimensions. For any continuous func-
tion with unique minimum and having the property of Theorem I, the following
holds. Let u, be any point of E,. Let uiy1 = u; + A\i:;, where \; is any
direction chosen at random and ¢; is the value of ¢ for which the function attains
a minimum on the curve w4 = wu; + Ai. Then the probability is one that
lim u; = u;, where u; is a minimum point for the function. If A; is taken

i—0o0
always as the gradient of u;, such a procedure is called the “method of steepest
descent” for approaching the minimum point.

Usually the limit is never attained. In this case, however, the minimum is
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attained. The minimum can be approached as closely as desired, hence a
complex incident on the minimum is reached. But the convex point sets of
Theorem I surrounding the minimum complex are all similar convex poly-
hedrons in E,, whose corresponding faces are parallel, and the gradients at
points on a bend cannot point into a higher dimensional complex on the bend.
Hence the sequence of points lie on bends of successively greater degree, and
must eventually attain the minimum complex.

TABLE II
Points uy

(-3 a a
U1 = U + Gul

w = (38, —5, —2)

up = (37.98202, —4.74828, —1.48457)
us = (37.45908, —2.07142, —1.85631)
us = (32.83333, —2.07142, —1.76191)
TABLE III
Computation of b, = zx/ws
= | we igfocrgfr exceeds |ati=| hencet) =
| wol (10) 17521 16 .00599334
| w | (15) 2502 2 .0397792
| ws (20) 4610 10 | .00496545
TABLE IV
Gradients g; for column (5k + 8)
b R i
0 -3 42 86
1 —13146 67293 —9345
2 —931588 0 19012

The computational procedure is as follows:

. Select a point uy .

. Determine the gradient g¢ from (5).

. Compute ws = zgs , 26 = ¥ — zhus .

. Determine #, by the method of section 8.

. Compute uy = ug + goto .

Determine the complex containing the best gradient by (9), and the
gradient gy by (7).

and so proceed to the minimum. This may be finally tested by Theorem III.

S OU W
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Step 5 is_ unnecessary, since the only use for uf is to6 determine e’x('ull). But
e'(u) = e'(b), the latter referring to the computation in step 4. Also, after
the first step, it is easier to compute z* by

] (] ]
Zryl = & — Wily .

10. Example. The computation for (9) is not so great as it would seem, since
some of the work is duplication and some must be computed anyway for the
gradient. Even so, for r > 3 it becomes, perhaps, more arduous than itis
contribution would seem to justify. For » > 4 it is recommended that the
test of (9) be omitted for points on bends of third degree or greater, and the
final test of Theorem III be applied at the end of the work. If this test shows.
the minimum has not been reached, the complex in which lies the best gradient
will be indicated at the same time.

The minimum number of steps is 0. The maximum number is tremendous
but finite. The expected number is probably a little greater than .

In Tables I to IV, the method is applied to the problem used by Rhodes to
illustrate his method. The independent variates are shown in columns (2), (3),
(4), Table I, the dependent variate in column (5). The only other original
datum is the initial point, selected by guess, shown in line 1, Table II. Since
slightly different formulas were used in the computation, the signs of cols.
(6), (8), (11), (16), (18) are reversed, and the gradients in Table IV are
multiplied by constants. As they are used only for directions, this does not
matter.
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