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with the associated indicial equation
(13) f(z) = z* — .3982° + .2202* — .013z — .027 = 0.

Its roots have been computed and are known to be less than unity in absolute
value. This may be verified by computing

m = 0782 >0
m = 3.338>0
m= 5398>0
(14) m = 4878 >0
= 1.604 >0
Ty = 14.204 > 0
Ts = 43.177 > 0

To compute the same results by cross-multiplication the work is arranged as
follows:

o me 4
782 5.398 1.604
m T3
(15) 3.338 4.878
mymwy — oMy myme — 0
14.204 7.824
Ta(‘lrﬂl’z_— MoWs) — Timsmy
43.177

It may be remarked that the presence of a negative coefficient anywhere in
the table is an immediate indication of instability, and that there is no necessity
to continue the computation until a negative sign appears in a leading coefficient.
This fact often saves much labor.

VALUES OF MILLS’ RATIO OF AREA TO BOUNDING ORDINATE AND OF
THE NORMAL PROBABILITY INTEGRAL FOR LARGE VALUES
OF THE ARGUMENT

By RoBerT D. GorpoN
Scripps Institution of Oceanography

A pair of simple inequalities is proved which constitute upper and lower
bounds for the ratio R, valid for £ > 0. The writer has failed to encounter
these inequalities in the literature, hence it seems worthwhile to present them
for whatever value they may have.

1], P. Mills, “Table of ratio: area to bounding ordinate, for any portion of the normal
curve.”’” Biometrika Vol. 18 (1926) pp. 395-400. Also Pearson’s tables, Part 11, Table III,
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MILLS’ RATIO 365
The funetion R, is defined by
1) R. = e’z"zf e L.

The following relations between R = R, and its derivatives are easily established
by direct differentiations and substitutions:

dR
) — * —_
(2) p 2R — 1,
R _ _dR 4+ 1dR | 1
® @ttt Tty
&R 2 &R 2
) pre —<1+x2——l——_i>xfl755_xﬁ—+—1'
Also by ordinary rules
(5) R. >0,
(6) lim zR, = 1.

1°. Suppose that at any point z; > 0, z;R > 1. Then by (2) dR/dxz > 0,
and R, would continue to increase with increasing 2 : still more, R, would con-
tinue to increase, hence we should have zR, > 1 for £ 2 z;, which contradicts
(6). Therefore we find zR, < 1 forxz > 0, and

1
(7) Rz é 57

which establishes the required upper inequality.

2°. Suppose that at any point 2, > 0, d’R/dz” < 0. Then by (4) d’R/dx* =
(d/dz)(d’R/dx") < 0 at this point. Since these derivatives are continuous this
implies that for all x > z., d’R/d2* < [d°R/dz"]=s, < 0. Then we get the
inequalities, for x > z,

AR dR d’R dR
Tz < [a;] + -2 [Tx] < [Ex“]

, dR 1. | 4R
R<hat o) ] + e -]

where [ ]; indicates evaluation at * = 2,. Since [d°R/dz’}; < 0, this implies
that for sufficiently large z, B, < 0, which contradicts (5). It follows thep
that (3) is positive, and substitution of (2) gives

x

221"

(1%

(8) R.



366 ROBERT D. GORDON

We combine (7) and (8) in the double inequality:

T 1 .
<R, <-, =>0.
9 Frisk=; ifzz0
This gives for the probability integral the corresponding inequality
x 1 —g2 1 ® —2/2 1 1 —22/2
2 + 1 \/ 2 '\/ 2w V= x '\/21"

It can casily be shown (for > 0) that equalities in (9) and (10) are impossible.



