ON RANDOMNESS IN ORDERED SEQUENCES

By L. C. Youna
Westinghouse Electric and Manufacturing Company

It is frequently desirable to examine an ordered sequence of measurements
for the presence of non-random variability, concern over any particular type of
variability being limited. Unless the sequence is one containing replicated
observations, current methods of analysis often restrict an investigation to
tests for specific forms of variability, such as particular orders of regression and
periodicity. In order to simulate replication, arbitrary grouping of data is
occasionally used and followed by some test of variance; this practice, however,
is likely to add an element of bias to the investigation.

Under these conditions, it would be convenient to have the means of testing a
series for the presence of general regression, before proceeding to test for that of
a specific type. It is the purpose of this paper to present, as briefly as possible,
a statistic designed for this preliminary type of examination, and to demonstrate
its application.

If a given sequence of measurements be denoted by

X:,Xe, o, X0
then the magnitude of

n—1

> (X — Xip)

1

C=1—-——F—"""",
2> (Xi — X)?
1

will be dependent upon the arrangement of the # observations upon which it is
based. C will have n! possible values for a given sample, corresponding to the
number of permutations of n items.

1. Moments of the distribution of C in terms of the moments of a
finite sequence. Writing C in terms z;, --. , ., representing the devia-
tions of X;, ..., X, from their sample mean of n measurements,
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In order to find the mean value of C for a given sample, it must be summed
over all values obtained from the n! permutations of the measurements.
Dealing with the numerator alone of the expression given above:

n—1

. n—1
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where =, denotes summation over the n! permutations.

There are n values of z;, and n! arrangements. Each value z; is z; in
(n — 1)! of the arrangements: the same reasoning applies to z,, . The first two
terms of the summation, therefore, will be

Zoat = Tt = (0 - D1 el

With regard to the third term, there are 2(n — 1) of such cross-products for
each arrangement. Since the summation is taken over n! arrangements, x;zx
will be different than xz;, and should be considered a separate term. Each
2(nl)(n — 1)
Ta(n—1)
arrangements, since there are n(n — 1) possible cross-products among # different
items. The third term, then, will be

n—1 n n—l n
2>, (Z x.-x.-+1) =2n -0 X zize=— 2(n — 1)1 ) x7,
1 1 1 1
from which it may be seen that the mean value of C is zero for any sample.

The same method may be applied in order to find the second and higher
moments of C. Squaring the numerator of the expression and expanding,
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Performing the summation =, term by term we obtain

crossproduct term, therefore, must occur times throughout the n!
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whence the second moment of C for any sample is given by

_2n -3 — m4/m§
M, = 2n(n —1) '’

where m, and m, are the second and fourth moments, respectively, of the n

observations about their mean.
In like manner, the third and fourth moments of the distribution of C for a
given sample of n observations are found to be
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2. Distribution of C for samples drawn from a normal universe. The
first four moments of the distribution of C for samples drawn from a given popu-
lation may be derived from the above formulae by substituting the mean values

2
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taining n observations, for example, the following mean values apply, as obtained

by the method presented by R. A. Fisher [1, 2]:

11% , etc. of samples from such a population. For normal samples con-
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Replacement of the sample moment ratios by the mean values of those ratios
for normal samples yields the following moments of C:
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Compatible results for the case of normal samples have been obtained by
Williams [3], using another method.
From the above results, the value of

8y = 3(n* + 2n — 12)(n — 1)(n + 1)
’ (=2 n+3)(n+5 '

is seen to approach normality as the sample size is increased.

Inasmuch as the distribution of C for normal samples is limited in both direc-
tions and is symmetrical, it is apparent that the Pearson Type II distribution
may be considered representative. Fitting this curve to the moments given
above, the equation of the frequency distribution is given by

where
(n* — n® — 13n* + 37n — 60)
2(n® — 13n + 24) !
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The values of B8, for the distribution, for various values of n, are as follows:

m =

Sample size, n B:
5 2.300
10 2.570
15 2.684
20 2.750
25 2.793
50 2.833

Due to the effect of even moments higher than the fourth, the approximation
afforded by the Type II curve is not reliable for samples containing less than
about eight observations. As the sample size decreases below this limit, the
extremes of the C distribution deviate increasingly from the extremes (=a)
of the fitted curve: with such a platykurtic distribution, therefore, the effect
upon the lower significance levels vitiates the approximation.

Although either 8, or the theoretical limits of the distribution of C' could
have been employed as a parameter of the fitted curve, it was considered ex-
pedient to use the former. In any case, of course, the advantage to be gained
would be in connection only with samples containing few observations (less
than eight). The evidence afforded by empirical sampling indicates that use
of the limits as a parameter might render the approximation less valid.
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In order to facilitate use of the approximate distribution for samples of eight.
or more observations, the values of C associated with two probability levels are
tabulated below in Table I. The ratio of each value of C to its standard error
is also shown, to demonstrate the approach to normality. The significance
levels recorded exclude 109, and 29, of the area under the curve, respectively.
In most practical applications, these will be the 59, and 1%, levels, respectively,
since only positive values of C exceeding the tabulated value will ordinarily be
considered significant. The tabulations were prepared from tables of the
function I.(p, ¢) [5], where ¢ = .5 and » = m + 1, with the transformation

2
z=1-— %.
TABLE 1
Significance levels of the absolute value of C
Sample size,n P = .10 C.xo/0c P =02 C.02/0s
8 .5088 1.6486 .6686 2.1664
9 4878 1.6492 .6456 2.1826
10 .4689 1.6494 6242 2.1958
11 4517 1.6495 .6044 2.2068
12 4362 1.6495 .5860 2.2161
13 4221 1.6495 .5691 2.2241
14 4092 1.6494 .55634 2.2310
15 3973 1.6493 .5389 2.2369
16 .3864 1.6492 .5254 2.2423
17 3764 1.6492 5128 2.2470
18 .3670 1.6491 5011 2.2513
19 .3583 1.6489 .4900 2.2550
20 .3502 1.6488 4797 2.2585
21 .3426 1.6488 4700 2.2616
22 .3355 1.6486 4609 2.2647
23 .3288 1.6485 .4521 2.2676
24 3224 1.6484 4440 2.2700
25 .3165 1.6484 4361 2.2717
Normal (n = «) 1.6447 2.3262

The distribution of C for normal samples containing 20 or more observations
is sufficiently normal, for most practical cases and for the more common signifi- -
cance levels, to permit use of a table of areas under the normal curve, in conjunc-

tion with the standard error ¢, = 1 / (n—-nl)———(—n_2+f) . The 5%, significance levels

shown in Table I result, at worst, in a one per cent error of probability estimate,
if the normal approximation is used in their place: that is, if 1.6447 times the
standard error is used instead of the tabulated significance level, the probability
will be .0505 at most, for the values of n which are tabulated.
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3. General discussion on the application of C. It may be wondered
why the statistic C has been used, rather than the more easily computed statistic

n—1

12 (Xs - Xl'+l)2

C'=

does not matter which is used, since C and C’ are linearly related. However, C
may be regarded as symmetrically distributed about 0 in samples from a normal
population to within at least four moments. Excessive departure of C from 0
may be taken as indicative of the presence of non-randomness in the series, the
actual significance test being based, of course, on the probability of obtaining a
departure larger than a given observed one, under the assumption of a random
series. Positive values of C, in general, correspond to positive correlation while
negative values correspond to negative correlation between successive obser-
vations.

There are various ways of detecting non-randomness in a series of observations,
such as regression methods, analysis of variance, etc. The use of regression
methods implies that we must know in general the type of regression function
to be tried. C is a very flexible statistic, on the other hand, for testing the null
hypothesis that a series is random, no matter what the alternative hypothesis is.
A thorough study of C as a statistic for testing the hypothesis of randomness in
an ordered series should include a study of the power function of C for hypotheses
specifying various types of non-randomness. However, we shall simply appeal
to intuition in proposing the statistic C, and forego power function considerations
in this note. In practice, the advantage of using C increases with the length of a
series: lack of randomness in a single sequence of ten or less observations may
ordinarily be detected by regression methods, in fitting a low order polynomial.
In a longer sequence of measurements, on the other hand, the presence of com-
plicated regression or of periodicity is often sufficiently obscured by variation
to elude detection by any other than a flexible method.

The statistic could be used to advantage in the field of applied statistics, in
the investigation not only of variate series but of attribute series as well. For
the latter purpose, an effort to tabulate the relationship between the level of
significance and the percentage of either attribute would facilitate statistical
investigation of random arrangement. A direct application could thus be made
to binomially distributed attributes by a scalar assignment (0, 1) to the dichot-
omy, followed by a procedure similar to that presented above. Similarly, the
randomness of vectorial observations could be examined from the viewpoint of
arrangement. The common method of treating such problems,—the “random
walk method,”—has occasionally been found inadequate in dealing with specific
forms of non-random order; this is especially true when the allocable cause of
variation has a multi-directional effect.

Needless to say, each of the fields of application considered so briefly above
would require development before a routine, efficient method of investigating
ordered arrangement could be established. Although probability level tables

As far as a significance test is concerned, it clearly
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have been provided in this paper for C as applied to normal samples, it is quite
evident that tables for samples from other parent distributions would be needed
for some of the applications mentioned above.

4. An illustration of the use of C. Although one example has already
been presented elsewhere [4] in which the distribution developed in Section 2
has been employed, a typical application of the statistic to an example in the
field of quality control will be given here in order to illustrate the mechanics of
solution. The data presented in Table II represent the percentages of defective
product turned out daily, over a period of twenty-four days, by a single workman.
The total output each day closely approxunates five hundred parts: this fact is
brought out to explain the calculation of x* for the observed series of percentages,
—it has no bearing upon the use of C.

TABLE II
Percentage of product rejected
Day %, X Xz d:

1 74 54.76
2 8.8 77.44 1.96
3 11.4 129.96 6.76
4 10.3 106.09 1.21
5 11.9 141.61 2.56
6 12.2 148.84 .09
7 10.0 100.00 - 4.84
8 8.4 70.56 2.56
9 94 88.36 1.00
10 10.9 118.81 2.25
11 9.9 98.01 1.00
12 11.8 139.24 3.61
13 10.0 100.00 3.24
14 8.9 79.21 1.21
15 9.7 94.09 .64
16 9.3 86.49 .16
17 12.0 144.00 7.29
18 12.3 151.29 .09
19 10.3 106.09 4.00
20 8.6 73.96 2.89
21 104 108.16 3.24
22 11.1 123.21 49
23 9.4 88.38 2.89
24 8.2 67.24 1.44
Totals 242.6 2495.82 55.42

nX*® 2452.28

7' =  43.54

C = .3636 (significant) x* = 21.518 (23 degrees of freedom) (not significant).
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The value of C derived from the data lies between the two significance levels
tabulated in Table I; there is reason to believe that the data are ordered, or non-
random. Computation of x*, however, has been carried out with the hypothesis
that all product was made under the same conditions (i.e. with a percentage
defective equal to 10.108%, the mean of the group). The value so obtained is
associated with a probability of about P = .50: the hypothesis is not disproved
by this test. In short, the variability of the twenty-four observations could be
considered random if it were not for the order of their arrangement.
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