THE DOOLITTLE TECHNIQUE

By Paur S. Dwyer
University of Michigan

1. Introduction. Most authors who have presented the Doolittle method,
from Doolittle [1] down to the present, have not given any formal proof that the
solution is valid in the general case. They usually are content with a form
describing the various steps of a Doolittle solution.

The author has recently shown [2] that the Doolittle method can be abbrevi-
ated to a technique which is also an abbreviation, essentially, of the method of
single division and its abbreviation which Aitken called the “Method of Pivotal
Condensation” [3]. It appears at once that the validity of the Doolittle method
follows from the validity of the method of single division—a validity which is
readily established.

However one may desire a ‘““proof” which is based directly on the Doolittle
technique without referring to other methods of solution. It is the chief
purpose of this paper to present such a proof. It is accomplished by the intro-
duction of a notation which precisely describes the conventional Doolittle
process and by proving that this process results in a system of equations whose
prediagonal terms are zero. It is a secondary purpose of the paper to emphasize
the advantages of the Abbreviated Doolittle method and to explain and illus-
trate minor variations in the conventional Doolittle technique.

2. The Abbreviated Doolittle solution. We first direct our attention to the
essential parts of a Doolittle solution and these are the last two rows of each
matrix of the standard Doolittle presentation. The additional rows in the
standard presentation are rows of products which are used solely for the purpose
of finding the two bottom rows of each matrix and they need not be recorded,
if a computing machine is available, since the essential information is present
in the two bottom rows. Doolittle [1] did not have calculating machines (he
used multiplication tables) but he put the important information in Table A
and carefully segregated the supplementary information in Table B. With
reference to this he wrote [1]

“It is to be observed that the numbers in Table B have but a single use while
those in Table A are used over and over, and where the number of equations is
large, it is of great advantage that they should be thus tabulated by them.selves
in a form compact and easy of reference.”

For purposes of proof, as well as for purposes of calculation if a computing
machine is available, it is only necessary to utilize the forward part of the
Abbreviated Doolittle solution which is the equivalent of the Doolittle Table A.
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450 PAUL S. DWYER

A four variable illustration of the Abbreviated Doolittle technique is presented
in Table I. The successive equations are indicated by number, as is customary,
and the operation which defines the equation is specified. The actual operation
is indicated more explicitly by the notation of column 3 and this is discussed in
the next, section.

The presentation of Table I intrcduces one variation from the standard Doo-
little method. The division is made by the diagonal coefficient of each row
rather than by its negative. One may still use the old technique, if he prefers,
but it is felt that one can subtract products as easily as he can add products with
modern machines equipped with automatic negative multiplication. In addi-
tion the entries of the equivalent rows then have the same signs and, too, it is
not necessary to take the time to change the signs of the second rows. This
variation uses the same division method as the method of single division [2]
and as the method of pivotal condensation [3] so that the abbreviated form of
these methods is, essentially, the same as the abbreviated form of the Doolittle
method.

The application of this technique leads at each step to a coefficient for each
variable. However if the process is to lead from our four equations in four
unknowns, to three in three, to two in two, to one in one, it follows that all the
entries to the left of the diagonal, which we may call prediagonal entries, must
be zero. That this is true in the general case is the objective of the proofs of
later sections.

3. A notation for and description of the Doolittle technique. A main contri-
bution of the present article is the use of a notation which describes the Doolittle
technique. As long as the Doolittle process is described loosely by means of
“operations” it is difficult to be precise in defining quantities which appear in
the calculation, but when a notation is used which is definite enough to permit
expansion in terms of the original coefficients, some sort of proof may be avail-
able. The present notation bears some resemblance to that suggested by
Gauss [4], though Gauss used letters to indicate the primary subscripts and
numbers to indicate the number of secondary subseripts and his notation was
directly applicable to the sums of least squares theory rather than to symmetric
equations in general.

We wish to find the solution of the equations

n

(1) Zl Ai;Ti = Gnyyg, .7 =1, 2: RN

i
whaere the matrix of the coefficients is symmetric. We do this by obtainit
auxiliary equations which feature a decreasing number of variables. No serici:
restriction is made if we assume that the variables z , 23, 23, etc., are eliminate
successively.  The Doolittle techinique may then be deseribed as follows:
We take the first equation of (1) and divide by its leading coefficient, a;; , to get
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n
a-
(2) E biuzi = by, where by = —2,
te=l an
and we then form
n
(3) 21 Gi2.1%3 = Gny1,2.1 with @i = @i — Gaba.
1=
We then divide by as.1 and get
- Giz.1
(4) > biga®i = boyrza With by = —,
i=1 Q22.1
We next form
n
(5) E Ai3.12T; = Qpy1,3.12 with ai3.12 = Qi3 — Q41 b31 — Q521 b32.1,
i=1
and
= G43.12
. 13
(6) Z b1'3~12 xX; = bn+1,3.12 Wlth bi3'12 = .
i=1 as3.12

This process is continued so that, in general, we have

n
(M 2 itz 1% = Gagrinzego,  §=1,2,000,m
1=l
and
n
(8) Zl b,-,-.u...,-_lx.- = b,.+1,j.12...,'_1, J = 1, 2, .- ,n
=
with
(9) Aija2...j—1 = Qi; — a,-lb,q - aig.lb,«;.l - aia.mbja.lz — e
- ai.i—2'12-ui—sbi.z‘—2-12mi—3 - ai,j—l.m...j—2bj,j—1.12...7‘_2
and
Aij.12. . .j—1
(10) bij.lz...j._l = —.

Qjj12.. -1

It is to be noted that the n» equations (1) are transformed by this process to
the n auxiliary equations of (7) or (8). The solutions of (1) are also solutions
of these auxiliary equations since the auxiliary equations are linear combinations
of (1). It is our purpose to show that the prediagonal coefficients of these
auxiliary equations are always 0 so that these auxiliary equations feature a
decreasing number of variables.

We may use the term primary subscripts to indicate the first two subscripts
and the term secondary subscripts to indicate the later subscripts which specify
the order of elimination of the variables. The “order” of the coefficient is then
equal to the number of secondary subscripts.
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The formula (9) gives the matrix of the final Doolittle set of equations. At
each stage of the reduction one can write down a formula for all the elements
in the matrix at that stage. Thus one can write the coefficients of order A,
@ija2...h , in terms of coefficients of order less than ,

Gije12...h = Qij — ailbil - aiz.lbﬂ-l — e
(11)

= Gip-t1a12.. 2D i h112. . 2= Qihara. . h—1Djher2. . i

It follows at once that

@ijuiz- . b = Gijo1g.. b1 ~ Gin.12...h~1Djh.12.. .51

(12)

Qip12. . h—1Ajh12. . h—1

= Qije12. . h—1 —
Qhh-12- « h—1

4. Some theorems on the interchangeability of subscripts. Our main objec-
tive is to prove that the prediagonal terms are zero. In order to do this we first
prove some theorems dealing with the primary and secondary subscripts.

THEOREM 1: The value of asj.... is not changed if the primary subscripts are
interchanged. This theorem which might be stated ‘“The matrix of the coeffi-
cients of a given order is symmetric”’ follows from the symmetry of the matrix
of coefficients of zero order. We can show that the symmetry of the matrix
having coefficient of order & follows at once from the symmetry of the matrix
having coefficients of order h — 1 by comparing the value a;;...., with that of
@ji....» obtained by dual substitution in (12). Since the matrix of zero order
coefficients is symmetric by hypothesis, it follows that the matrices of the
coefficients of order 1, 2, 3, 4, etc., are in turn symmetric.

THEOREM 2: Any pair of consecutive secondary subscripts may be interchanged
without changing the value of the coefficient. This theorem indicates that, within
prescribed limits, the order of elimination does not have any effect on the result.

Consider the coefficient a;;.....s... having r secondary subscripts before the
k and s secondary subscripts after the I and consider the corresponding coeffi-
cient a;....;x... which results from an interchange of k and I. These coefficients
can be expressed by continued use of (12) in terms of coefficients of order » + 2.
The resulting expansion of @;;....s... is equivalent to that of ay,....x... with the
interchange of the I and the k. It follows that the theorem is true if ;... =
@ijo....n . Now a double application of (12) to a.j....x leads to the expansion in
terms of coefficients of order r (using the notation a;;. to indicate the coefficient

of the r-th order).
Qike Qike Qjk. Qike
ai. — ‘___) aj. — A5 e
_ Gk Qi QL. Orke

ke afk'.
an. — —
Qxk.

(13) Qije...kl = Qij.

Then a;;. ... is expanded similarly, the difference is formed and found to be zero.
It follows that the theorem is true.
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The application of Theorem 2 with the continued interchange of successive
secondary subscripts in all possible ways leads at once to

THEOREM 3: The secondary subscripts may be tnterchanged in all possible ways
without changing the value of the coefficient. This theorem might be stated “The
value of the resulting coefficient is independent of the order of elimination.”
This is the sort of result one would expect to find and indeed, some may feel that
it is intuitively evident, but this formal proof is presented for those who desire
a more rigorous approach.

Theorem 3 enables us to prove Theorem 4 which may be stated: The value of
@ijas...n 18 always zero if at least one of the secondary subscripts is equal to one of
the primary subscripts.

Suppose 7 is this subscript. Then by Theorem 3, 7 may be placed in the final
position. Now by (12) we have

Qije. .. Q...

Qije...i = Qije... — ———————— = 0.
Qi . .

A similar statement holds if j appears among the secondary subscripts.

6. The vanishing of the prediagonal entries. As an application of Theorem 4
we can show that the prediagonal entries are identically zero and this is exactly
what is needed to establish the validity of the forward Doolittle process. It is
to be noted that the prediagonal entries are of form a;j.12...;1 with¢ < j. Then
¢ must equal one of the secondary subscripts and the term is zero.

It follows that no entries need be made to the left of the diagonal in the
Abbreviated Doolittle solution and, indeed, no entries need be made in the
original matrix below the main diagonal. A numerical problem is presented in
the next section.

6. Illustration. The Abbreviated Doolittle technique is illustrated in Table
II. This illustration is essentially an illustration of a previous article [2] and
serves as the basis, in a later section, for expansion into the standard Doolittle
solution. The check is shown in the right hand column and the back solution
is indicated. The check entries for the first matrix are obtained by adding the
entries in the row to the main diagonal and then adding the entries in the
column. All other check entries are obtained by adding the entries in the row.

The solution is easily made once it is understood and results from continued
application of formula (9). For example

Gsa.123 = Ggs — Asbay — Gspabaa.1 — Gp3.12bas.ne
and this is
ase.123 = .8000 — (.2000)(.6000) — (.3200)(.1905) — (.4619)(—.1612) = .6935

(see the underscored entries of Table IT). Terms of this sort are easily com-
puted if a calculating machine, and especially so if one equipped with automatic
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positive and negative multiplication, is available. The back solution too is
easily accomplished with a machine. It is only necessary to substitute in turn
4123

in each of the “b” equations. Thus the value of z; is = bss.103, the value

Q44-123
of 18 bss.12 — bas.12bsa.128 = bss.1e4, that of 23 is bsz.1 — bae.1bsa.12s — bse.1bss.rea =
bsa.134, etc.  The back solution of the check is treated similarly.

7. A variation in technique. Before proceeding with the presentation of a
standard Doolittle solution it seems wise to indicate another possible variation
in the technique in addition to the division by the diagonal coefficient rather
than its negative. It is possible to obtain the Doolittle solution by using the
fixed entry from the first of the equivalent rows in place of using the fixed “b”
entry and the variable “a’”’. This results from the fact that

(14) Qige ... bik---- = Qjke. .- bik.. .. <= M) .
Aks. .«

Thus in Table II the value ass.123 can be obtained with the use of
O54.123 = QUpa — Qarbsy — Qag.abse.1 — Q4z.12bss .1z
as readily as with the use of

Gss.123 = st — s — Gsaabaen — Ggs10bssae

See the boxed entries of Table II.

There seems to be no real choice between these techniques. The fixed “b”
is traditional in the standard Doolittle solution while the abbreviation of the
method of single division leads to a fixed “a”’. The point to be emphasized here
is that either the fixed “a’ or the fixed “b”’ can be used. Also (14) is used in
the next section in supplying details for the check portion of a standard Doo-

little method.

8. The standard Doolittle method. If no computing machine is available
or if a more detailed solution is desired, it is preferable to record the individual
products of (9) and thus arrive at the standard Doolittle method. (The division
by the diagonal coefficient rather than its negative is not a fundamental differ-
ence.) The standard Doolittle method, from this point of view, is an expanded
form of the Abbreviated Doolittle method: with more details added. Its validity
then follows from the validity of the Abbreviated Doolittle method. While it
is not true that all prediagonal terms vanish in the standard Doolittle method,
and this fact complicates the check by row sums, yet the prediagonal a;,....
(and b;;....) are all zero.

The standard Doolittle method is presented in Table III. Some remarks
should be made about the non-recorded terms, the two check solutions, and the
back solution.

The blanks (—) indicate non zero entries which are usually not presented in a
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Doolittle solution. They should be considered however if the first check method
is to be used.

The first check method, which is the logical extension of the check method of
the Abbreviated Doolittle solution, has been outlined by Ezekial [5]. The row
sum is the sum of all the entries in the row whether recorded or not. In order
to check, it is necessary to add these unrecorded entries, and they are available

TABLE 1II
Abbreviated Doolittle Solution; illustration

T T T3 T4 Check
1.0000 .4000 .5000 .6000 .2000 2.7000
— 1.0000 .3000 .4000 .4000 2.5000
— — 1.0000 .2000 .6000 2.6000
— - — 1.0000 .8000 3.0000
1.0000 40000 .5000 6000 .2000 2.7000
1.0000 .40000 .5000 .6000 .2000 2.7000
8400 .1000 [-1600) 3200 | 1.4200

1.0000 .1190 .1905 .3810 1.6905

7381 | - 1190| .4619 1.0810

1.0000 — 1612 6258 1.4646

.5903 .6935 1.2837

1.0000 1.1748 2.1747

1.0000 .8152 1.8152

1.0000 .0602 1.0602

1.0000 —.9366 .0635

in the columns above if we make use of formula (12). Thus, if we wish to check

b
the value E aaby = 1.6200, we have

i=1
anba + aaibu + azba + auba + asby =
a4 + auba + aubn + auba + eaba =
.6000 + .2400 + .3000 + .3600 + .1200 = 1.6200.

Another check method, which is recommended by Peters and Van Voorhis [6]
sums the entries in the row only over those columns which are to be recorded.
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This is presented as check method 2 of Table ITI. Asis to be expected, the check
values of the a’s and b’s of the last two rows of each matrix are in agreement.

It might be noted that one may use the first check method without checking
the intermediate steps (the sums for each row) if he checks the sums for the last
two rows of each matrix.

TABLE III
poolittle solution, with checks
Notation = a2 78 o Mothod 1 | Methad 2
a1 1.0000{ .4000 | .5000 .6000 .2000 2.7000 2.7000
ais — 11.0000 | .3000 | .4000 .4000 | 2.5000 | 2.1000
ais — — ]1.0000 | .2000 .6000 | 2.6000 | 1.8000
iy — — — 1.0000 .8000 3.0000 1.8000
ai 1.0000{ .4000 | .5000 | .6000 .2000 | 2.7000 | 2.7000
ba 1.0000| .4000 | .5000 | .6000 .2000 | 2.7000 | 2.7000
iz — |1.0000 | .3000 | .4000 .4000 | 2.5000 | 2.1000
ainba — .1600 | .2000 | .2400 .0800 | 1.0800 .6800
Qiz1 .8400 | .1000 | .1600 .3200 | 1.4200 | 1.4200
biz 1.0000 | .1190 | .1905 .3810 | 1.6905° | 1.6905
a3 — — ]1.0000 .2000 .6000 2.6000 1.8000
a:ba — — .2500 | .3000 .1000 | 1.3500 .6500
@iz 1bsa1 — .0119 | .0190 .0381 .1690 .0690
Qig12 .7381 |—.1190 .4619 | 1.0810 | 1.0810
bis12 1.0000 |—.1612 .6258 | 1.4646 | 1.4646
aii — — — 1.0000 .8000 | 3.0000 | 1.8000
aitba — — — .3600 .1200 | 1.6200 .4800
@iz1b42-1 — — .0305 .0610 .2705 .0914
Qig12Das 12 — L0192 —.0745 |—.1743 |—.0553
Qig123 .5903 .6935 | 1.2838 | 1.2839
bis 123 1.0000 j 1.1748 | 2.1748 |
bis12e 1.0000 l—.1894 .8152 |(1.81532 |—.3506
biz 134 11.0000 [ .0970 | .2238 | .0602 | 1.0602 | .4143 T .2160|
birans 1.0000| .0241 | .4076 | .7049 |—.9366 .0634 | 1.3049 .9076| .4241

The back solution is carried out as in Table II. If no computing machine is
available or if the detailed steps are desired they may be indicated as in Table
III. The entries in the box under the z; column are respectively bss.123b43.12 ,
bos.123ba2.1, and bss.a2sba . Those in the preceding column are bss.jeabse.; and
bss.124b31 . The other entry is bss.134b21. The values of the coefficients are ob-
tained by subtracting these row entries from the constant term of the corre-
sponding “b” equation. Thus, bg.ie = (.6258) — (—.1894); bgp.uu =
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(.3810) — .0970 — .2238, etc. The back solution of check method 1 agrees
with that of check method 2. A form for accomplishing the back solution of
the check is indicated at the right. It is not necessary to complete the back
solution of the check if it is not desired, and indeed, there are some who feel
that the use of the row sum check is unnecessary with modern computing ma-
chines [7]. The basic check is substitution in the original equations.

9. Summary. The chief purpose of this paper is,to show that the Doolittle
technique actually leads to a set of equations featuring a decreasing number of
unknowns. This is accomplished by the introduction of an appropriate notation
to describe the process and the establishment of certain theorems which serve
to validate the process. These theorems are of some interest aside from the
application made here. It is a secondary purpose of this paper to emphasize
the practicability and theoretical advantages (relative ease of calculating, theo-
retically more accurate, less chance for numerical error, less recording, less time
consuming, more compact, and more easily checked) of the Abbreviated Doo-
little method and to explain and illustrate possible variations in technique in the
forward and check (by row sums) portions of the standard Doolittle solution.
It should be noted that the notation suggested is very useful in providing an
easy development of various theorems used in multiple and partial correlation
studies, the presentation of which is not the purpose of the present paper.
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