DISTRIBUTION OF THE RATIO OF THE MEAN SQUARE SUCCESSIVE
DIFFERENCE TO THE VARIANCE

By JouN voN NEUMANN

Institute for Advanced Study'

1. Introduction. Let z;, ---, z, be variables representing n successive ob-
servations in a population which obeys a distribution law
(o 1
ce” @M gy, <c = —),
o\ 27

i.e. which is normal, with the mean ¢ and the standard deviation ¢. For the
sample we define as usual the mean,

the variance,

and also the mean square successive difference

1 n—1
62 = E (x#+l - xﬂ)z'

n—ly—l

The reasons for the study of the distribution of the mean square successive
difference &’, in itself as well as in its relationship to the variance s’, have been
set forth in a previous publication®, to which the reader is referred. The distribu-
tion of 6°, and in particular its moments, were also studied there. The present
paper is devoted to the investigation of the ratio

52
n= oy
A comparison of the observed value of y with that distribution is particularly
suited as a basis of the judgment whether the observations z;, ---, z, are
independent or whether a trend exists. (Cf. sections 1 and 2, loc. cit.?)
The moments of 5 have already been determined by J. D. Williams by a

1 Also Scientific Advisory Committee of the Ballistic Research Laboratory, Aberdeen
Proving Ground.

2 John von Neumann, R. H. Kent, H. R. Bellinson, B. I. Hart, “The mean square suc-
cessive difference,” Annals of Math. Stat., Vol. 12 (1941), pp. 153-162.
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368 JOHN VON NEUMANN

different method.® Williams’ results have been checked by W. J. Dixon at the

suggestion of S. S. Wilks, whose stimulating interest has been largely responsible
2

for the undertaking of the series of papers on 8" and gﬁ The present rather

exhaustive discussion, however, brings out several other essential characteristics
of this statistic, and provides the key to some very effective computational
methods. It is further hoped that the reader will find that the mathematical
methods used and the generalizations indicated have an interest of their own.

From the latter point of view the final results of sections 5 and 7, concerning
the distribution of values of quadratic and of Hermitian forms, may deserve
special attention.

2. Diagonalization of the quadratic forms and replacement by a spherical
mean. Since 8° and s* are unchanged when we replace each z, by z, — §, we
may assume § = 0. Then the distribution law of z is

n
—22/942 1 —z3/20%
ce™**dz,  and that of z1, - - -, x4 is [] ce™*" da,,
w1
i.e.
— §1z3/212
c"e * dzy - dZa.

Any linear orthogonal transformation of the z;, ---, z. leaves Z :c,f and
p=1

dz; - -+ dz, unchanged, hence the above distribution law will likewise be left
unchanged. Thus, we may subject the two quadratic forms &, s’ to any simul-
taneous linear, orthogonal transformation.
Consider one carrying z;, -, &, into, say 2, -+, Z, , which brings the
quadratic form (n — 1)é° into the diagonal form, say > A,‘xf. Such a trans-
p=1
formation does not affect the characteristic values of the quadratic forms*, and

these characteristic values are obviously A;, -+, 4, in the case of Az’
p=1

Consequently 4, ---, A, are the characteristic values of the original quadratic
form (n — 1)8°. We shall determine them as such in the next section.
Clearly we always have (n — 1)6° = 0, hence all 4, = 0. Some 4, may

3 J. D. Williams, ‘““Moments of the ratio of the mean square successive difference to the
mean square difference in samples from a normal universe,” Annals of Math. Stat., Vol. 12
(1941), pp. 239-241. Cf. also L. C. Young, “On randomness in orded sequences,”’ Annals
of Math. Stat., Vol. 12 (1941), pp. 293-300.

4 For the properties of matrices and quadratic forms cf. e.g.: J. H. M. Wedderburn,
Lectures on Matrices, Amer. Math. Soc. Colloguium Publications, Vol. 17, New York, 1934.
In the present context cf. mainly Chapters II and VI.



DISTRIBUTION OF A RATIO 369

equal 0 say £ (= 0, 1, ---, n) of them, which we can arrange to be 4, 1.1,
-, A
) n .
(n — 1)8* = 0is thus equivalent to z; = --- = zh_; = 0, i.e. to n — k inde-

pendent conditions. On the other hand this amounts obviously to z; = -+ =
Z, , and these are n — 1 independent conditions. So ¥ = 1 and consequently

Ay, -+, As1 > 0, A, = 0. And our linear orthogonal transformation must
carry the z-vectors with z; = -.- = z, into the z'-vectors with zi =

=,y = 0. Amoné the former, —1—., R has the length 1; among

n \/ n
the latter only 0, ---, 0, &= 1 have. Hence these correspond to each other.
Now the scalar (inner) product of two Vectors is an orthogonal invariant, that
of a vectorz, , -, z, with — \/_, .. \/_ is v/ni, that of a vectorz , - - - , .
with 0, - -+, 0, &1 is =, , hence
\AVnE = +az..
Put z, = £ + w,. Then clearly Z = 0. Hence

=]

n
2 - 2 ’
Zx,, = nz + Eu,, =zt + ns’.
u=1

=1

Owing to the orthogonality, the left-hand side is equal to 2, .}, therefore

=1
n—1
-5

=1

Remembering that A, = 0, we also have

n—1
(n — 1)8* = 21 Azl
e

Consequently
n—1
2
2 A,z
) n ; oo
"7 — —_‘; = ——_—1——- .
g n—-1
2.z
p=1
. . . . !’ !/ .
The distribution law is, as we know, the sameinz;, ---, 2, asinzy, «++ , 2, ,
namely
3 252/202
- 2,2/ 20
=1 ! ’
c"e” dzy - - dz,,.
ry ! . ! ’
Thus zi, - - -, ., are independent. 7 depends on z; , - -+, Z,_; only, hence we
. ! . . . . ’ ’
may disregard z, altogether, and use the distribution law of the z;, - -+, .1,
—”i:z;,ﬂ/za‘«’

—1 W ’ ’
" e dzy -+ dTp_y.
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With respect to 21, -+ - , ,_1 we may now state that the z1 , - - , zh_, dis-
tribution of n can be obtained by determining first the distribution of n over
every spherical surface

n—1
2zt =
p=1

and then averaging these distributions with the weights y(r) dr, where ¥(r) dr
is the probablhty of the spherical shell from r to r 4+ dr with respect to our

original zj , - -+ , x,,_; distribution law. (It happens to be c’e "**r" % dr, but
this is immaterial.)
Since the zy , - -+ , z,_; distribution law is obviously spherically symmetric

in these variables, the first-mentioned distributions over the spherical surfaces
are readily obtained by assigning each piece of the surfaces in question its own
relative, n — 2-dimensional area as weight.

Since 7 is a homogeneous function of z; , - - - , z,_; of order zero, these spherical
surface distributions of 7 are the same for all . Consequently we can replace
all these r by, say r = 1, and the subsequent averaging over the r may be omitted
altogether.

Finally, since we restrict ourselves to r = 1, i.e. to the spherical surface

n—1

Zx:=1’

p=1

the denominator of » may be omitted and we have

n—1
A,
Tn—-1 ?:‘1 :c
We sum up, writing again z;, -+, &,y for 2y, - -+, zw_;, then the desired
distribution of % is that of
n—1

ZA SC,‘,

where the point 2, , -+ -, £, is uniformly distributed over the spherical surface

n—l

Here Ay, - -+, Aa are all positive, and together with O they are the charac-
teristic values of the quadratic form
n—1

(n - 1)62 = ‘; (xu+1 - xu)z

n—1 n—1

2 2 2
X1 +222x,,+x,. —2Zx“x,,+1.
= p=1
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3. The characteristic values A, ; first orientation concerning 7.
shown that there exist (counting multiplicities) precisely n — 1 positive roots
A of the characteristic equation

A-1
1

Det

1
A4-2
1

1
A-2 1
1 .

"‘ l
1 4-2
1

1
A -2
1

1
A4 -1

371

We have

(the empty places are filled with zeros), and that these roots are the
Ay, - o Ans.
Such an A is characterized by the possibility of solving the equations

A-Dni4+2=0, 01+ A —-2)x2+23=0, 22+ (A — x5+ 24 = 0,
y Tnet+ (A—2)2, 14+ 2,=0, 2,0+ (4 — Dz, =0,
Put

-, =, not all equal to zero.

Zy = T, Tnyl = Tn,

4 =2 — 2cos q,

then these equations become

Ty1 + Ty = 2 cos a-z, for p=12 .- n—1n.
The last equation is satisfied by
2, = 2cos (u — e for vp=012 -, n—1,nn+1.

Now zy = z, is automatically fulfilled, while 2,4, = z, demands cos (n + 1)a =
cos (n — $)a. This is certainly the case when (n + 3)a = 2kr — (n — Ya

(k any integer), i.e. a =I—:—r. Fornok=1,--- ,n—1larems, ---, z, all equal

to zero (indeed z, = 2 cos g—: > 0) , hence these k give A’s of the desired kind.

They are

thr

A=2—2coslcir=4sin
n 2n

(k=1,~-~,'ﬂ—'1),

and so they are all positive and different from each other. Their number is

n — 1. Hence they are precisely Ay, -+, An_y.
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So we have shown
A =2 —2cos ™ = 4sin?*" =1 ....m —
u cos — 4 sin o =1, ,n—1).

We can now reformulate the final result of the preceding section.
Let us set

2n
= 1—e).
n=_—71-¢
Then
n—1
€= D cos ‘ir-xﬁ ,
w=1 n
where the point z;, - - - , T,_1 is uniformly distributed over the spherical surface
n—1
> =1
p=1

Replacement of z, by z,_, carries ¢ into —e. Therefore the distribution of
¢ is symmetric around 0. Hence the mean of e is 0. The maximum of ¢'s
(n—1m _

™
—cos —. Westate
n n

. . . N m™ . o e .
distribution is clearly cos —, its minimum is cos
n

these facts, together with their equivalents for 7.

¢ (n)’s distribution is symmetric around its mean, which is 0 (n 2n 1> . The

maximum of e (5)’s distribution is cos T ( 2n I:l + cos 1_r:| = _4n cos’ 1) ,
n\n—1 n n n,

. .. . T 2n T 4n .. 7
its minimum is —cos — 1 —cos—|= sin® — ).
n\n—1 n n—1 2n

Thus it will be easier to obtain information concerning # by considering the
distribution of e, since all odd moments of e are zero, etc. The investigation of
¢ instead of n was first suggested by B. I. Hart, who also found, that the first
four odd moments of € vanish. R. H. Kent and B. I. Hart also determined the
minima and maxima of these distributions for certain small values of n.

4. Direct computation of the moments. We shall investigate the distribution
law of a quantity

Y= Z Buxtzt'
where the point z;, - - - , 2= is equidistributed over the spherical surface
> zh = 1.

(Our above e obtains by puttingm = n — 1 and B, = cos %r )
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We denote the mean of any function

f(xly yxm)
over the above-mentioned spherical surface (the z;, -- -, z, being equidistrib-
uted over it) by

f(zly Tty xm)'
Our primary objective is to determine the moments of this distribution

J— m P
M,,=y”=(“ZB,.x,2.>, p=01,2--.).
=1

Let us write Z, for the (m — 1-dimensional) area of the above-mentioned

spherical surface (of the unit sphere in m-dimensional Euclidean space).
Now we form the function

fz) = f [ e 2 PR BT dry - da.
(This integral, as well as all others which we are going to derive from it, is ob-

viously convergent, as long as z is sufficiently small. More precisely this is true
when

|Z'MaX(|B1|,,IBmD§1

We shall use them only in the neighborhood of z = 0.) Now clearly

P o © m D m m
{Edz—p f(Z)} = {f e f z B“ xi) elué‘ Byz} e—“z‘.l z} dxy - - dxm}
= - e =1 2=
o 0 m D m
= f f (Z B,,xﬁ) e tdr, - dzy,
w0 o \it

0 0 m P m
[T [ (B ) ehan e den
© /— 0 =1

(-]
2p —r? —1
f Myr®e Zur™ dr
o

Ir

Q0
—r2 2p+m—1 3 5
E,,.M,,f e PPt gy
o

-]
3Z. M, ‘i e uP T gy

= %2,,.M,,I‘(p+%).

§ Introduce the new integration variable u = 72,
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On the other hand
f(z) = f oo [ e_“Z, (1—8“2)22 dx “ee dxm

p=1 J—oo

=JI 31 - B,2)* 2[ e u du
pe=1 0

= q 31 — B,»)t2r(®
e

= TH"BR),

where

PBlz) = ImI (1 — B,2).

pu=1

1z M P(p + ’”) = r( )m{f, ‘B(z)‘*}H

For p = 0 this becomes, since M, = 1, B(0) = 1,

2>5() =1 (3)”

Dividing the former equation by the latter gives, since

r<”_+%)=ﬁ maY (Mg —1),
@ )l
) o)

Thus

M, =

2

In order to make a practical use of the above formula, we compute

Ms

In (B)7H

In (1 — B,2)

2 —B’z’
l=

&)+

¢ Introduce the new integration variable u = (1 — Byz)r?.

-1
2

®
|
-

1M

-1
2

—

=
- 1
=3 =

=12l
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Write
_ 1~
x 21 “Z_; By,
then
P = gretanstragzite
=14 Bz + B2’ + B2+ -+,
and so
Mp=m - 1’2"'3; ﬁp.
o) G
Clearly

B1 = a1,

B = a + }ai,

Bs = s + aroe + %af,

B = as + 3ai + aias + 3afer + Fai .
In our application (cf. above)

Bniiw = —B,.
This has the consequence that
ag=a=a ="' =0.

Thus the z functions we compute contain only even powers of z and consequently

Br=B=pB=" =0,
My=My=Ms=-- =0,
and
B: = az,
B = ou + 3oz,

3
og + ooy + gaz,

Bs

2 2 4
Bs = o5 + 2ag + asas + 3asas + Hgon .
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As mentioned before, we actually have m = n — 1 and B, = cos % Con-

sequently

1 n—1 ur l 1 n—1 y
= = adid - w:r n —imr/n l
M= g & {“’S n} 9 = )}

1 n—1 1 l
z Z <k> ei(2k—l)mrln 7

o] H &

1 l l n—1 eu bl
= 12wu(k—4l)/n
2i+1] Ié (k) E e

— 1 l <l> {" S i2rp(k—4l)/n }
= Z e — 1.
l k=0 p=0

The inner sum has obviously these values

n—1 .
Z 61,2"4 (k—31)/n

u=0 = 0 otherwise.

> (i)'(—l) - -2

=n if k — 3l is divisible by n

Also

Consequently

n 1 1
o= g 2 (1)~ 3
where Y’ extends over those k = 0, - - -, [, for which k — 3 is divisible by n.
k

Let us now determine the & occurring in the following sum (as above, £ — 3l

is divisible by n) >_". = 1l is clearly one of them. All others are of the form
k
k=3 4+ hn,h=1,2 ---. The term contributed is the same for + and
for —, since
(o 20) = (e L)
H+hn) 3 —hmn)’
So we have
= 0, for 1 odd,

™ -1 ﬁl:<l>-|--2 > < ! )]—-1} for [ even
AV AR hetizee-r \Zl — hn ’ ’

7 As pointed out above, we need to consider only the even I.




DISTRIBUTION OF A RATIO 377

The number of terms which thesum D contributes depends on the comparative
sizes of [ and n. The number is c’iz;:'ly

0 for 3l < n,

lfor n < il < 2n,

2 for 2n £ 3l < 3nm,

Explicit formulae follow:®

a1=a3=a5=a7=a9=...=0’
az=n—2, (0 forn = 1),
8
3n — 8
ay = n64 ’ (0forn = 1, 2),
5n — 16 1
as——lg—2, (Oforn—1,2,3_8_4,n_3>’
35n — 128 1 1 3
%= o088 <0f°r""1’2”2‘bzs’"‘3’1‘2§’"‘4>'
Bi=PBs=Bs=Br=Bs=---=0,
Bz=n;2, (0 for n = 1),
n’ 4 2n — 12
64_T’ (0 forn = 1, 2),
n® 4+ 12n* + 8n — 168 5 )
Bs = 3072 , <0forn—1,2,m,n_ ,
n* 4 28n® + 212n° — 64n — 3696
BB - 98304 5 (0 fOI' n = 1, 2,
35 35
- — . =4 .
52768’ "~ % 2048 " )
1W1=M3=M5=M7=M9="'=0’
xu'z = 8 n—2 (O for m = 1)’

=D D T m =D+’

8 The author wishes to express his thanks to Miss B. I. Hart for her kind help in carrying
out these computations.
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M = 384 By = 3(n’ + 2n — 12)
T =D+ D0 +3)@m+5 T @m—Dh+Dn+3)n+5)’
(0 forn =1, 2),
Mo = 46080 8
T -—DhF+DmFAn A+ +NE 9
_ 15(n3 + 12n® + 8n — 168)
=D+ D +3n+5n+7E+9’
0 forn =1, 2; vz, n = 3).
M, = 10321920

DT T T F I F I+ IDE+ 1)

105(n* 4 28n® + 212n° — 64n — 3696)
Din+ D +3)n+5®m+7m + 9m + 11)(n + 13)°

(0 forn = 17 21'3"2'375?'8'7 n = 3; ‘2’%’ n = 4)

(n

We conclude this section by obtaining asymptotic formulae for the distribu-
tion of e when n — .

In this case our formulae show that all a; (I even) behave asymptotically like
constant multiples of n. It also appears from our formulae for the 8, (I even),
that

B = (lLl)' ol +a polynomial in as, a4, *++, a;_g of total order = 3l — 1.
2t) !
Consequently (%Ll)! ol is the dominant term in this expression, and so we have
asymptotically '

B~ 1 o ~_ L (7_2)“
Tt ani\s/ -

From this

2

] no(1\*
Mwﬁlﬁw G—l)'(%) :
Now the normal distribution

1
01e—u2/2’t dy, (CI = "—._) ’
a1V 2r

with the mean 0 and the standard deviation ¢; has the moments

-]
m =[ Y eVt gy,
00
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This is clearly O for ! odd, while for I even®

-]
l 1 g —
m = ql+lcl.2§( +1) [ ¢ uul(l 1) du
0

— 2}(l+1) a{ﬂ al <’l '*2‘ 1) .

For I = 0 this becomes, since mo = 1,
1 = 2 (3).
Dividing the former equation by the latter gives, since
l+1
f(F) 1 1o
@) 2 2’

m =13 -+ (10— 1of = I ,_L(é)“
‘ T T @ni\z/ -

8 ..
2

. 2
Comparing the formulae for M; and for m, shows that M; ~ m, if 2_11-2 = %,

o = % So we see:
For n — o« the distribution of ¢ becomes asymptotically normal, with the
mean 0 and the standard deviation ¢; = 1/% . (The same result could be ob-

tained by applying the general theorems of Liapounoff and others.)

6. The distribution law, general discussion. We return to the quantity v,
defined at the beginning of the preceding section, of which our e is a special case.
We wish to obtain direct information concerning the distribution law of this v.

Since a permutation of the B, is permissible, we arrange them such that

Bi=zZBy;, = :-- = Bn.

(In the special case vy = ¢, the B, = cos ‘% are given in this arrangement.)

The distribution of v covers obviously the interval
Bl g y g Bm .

And if not B = --- = B,, i.e. if B > B, , which we assume to be the case,
then we have obviously a continuous distribution law for v in this interval.
We denote it by w(y) dy.

9 Introduce the new integration variable u = l; .
L



380 JOHN VON NEUMANN

Assume for the moment that B, > 0. Then the quantity

m —im

is bounded, and we can therefore form its mean value. This is the —% moment

of v (cf. the beginning of the preceding section)

= m . —im
M_yn=v = (uz; Buxu)
B,
= fB v " w(y) dy.

With any twoa > b > 0 (We shall have 2 — o subsequently) form the

b
quantity
= [ ] (E) i
a?> ':lzﬂzbz
= f P, ™ Ny = E,,.f d_r
b b T
=3, ]n e
Consider next
. m —im
s(a, b) = f le,z,) dzy + -+ dzn
a2 “21 El-;zngz
= f f <ZB x,,) HB“dxl---da'm
=1

a2 2 z22b2

f M_s, <“Z x,,) Il B.dz; - -+ dam

pu=1

I
\.

a?2 El 22202

= M_in 1/ 11 B. i(a, b).
p=1

10 Concerning this transformation to polar coordinates and the quantity =, cf. the first
part of the preceding section.
1 Replace each variable z, by \/Bu,z, .
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On the other hand, a comparison of their respective integration domains makes
it clear that

t(Bma, Bib) = s(a, b) < t(Bya, Bb).

Thus
Bna K a Bia
m e = —im *am - = ml B 1
b 1n_Blb < M_ 4/}13,.2 Iny <2 ngy
i.e.
B a B
n%—m2t InZ 4+ In=t
1 b B"‘éM_gmé 1 b B,,.'
m a m a
15 I} 115 Ij
p=1 u=1
Now let %——» o, then
Mojn= —
proie
obtains, i.e.
——m B 1
II B.
u=1

We now drop the assumption B, > 0. We consider instead a real number
2z with z < B, . Replace each B, by B, — z. Then the one with u = m be-
comes > 0. And v is obviously replaced by ¥ — 2. Consequently our above
equation is now valid in the form

(r—a™= f:l (y — ) "aly) dy = .

H (Bu - z)
u=1

Let now z be a complex variable. The second term of the above equation is
a (locally) analytical function of 2z, except in the (real) interval B; = z = B, .
The third term, too, is a (locally) analytical function of 2, except at the (real)
points By, ---, B, . Consequently both are one-valued analytical functions
of z in the simply connected domain which obtains from the complex z plane by
exclusion of the (real) half line

2 B..

v

Hence the equation

(1) jjl =) "ely) dy = ———e=,
" H (Bu - z)

pu=1

1
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which holds for all (real) z < B, , remains true for all complex z of the above
domain.”

We observe next that w(y) is an analytical function of y in B, =2 y = Bn,
whenever y # B,, -+, B, . This is easily established by using any multiple
integral expression for w(y) which, while hard to evaluate explicitly, puts this
analyticity into evidence.”

1

—F————are those branches of these
A/ 11 B2
=l

analytical functions which are (real and) > 0 when z is (real and) < B, . When m is éven
(as it will be, cf. below) the domain of analyticity is somewhat more extended, but we need
not discuss this.

13 The computation which follows gives the desired analyticity in a simple way, and also
makes it clear why the analyticity failsaty = By, --- , Bn .

Consider the y # B,, -+ , Bnin By 2 y = Bn . The probability of v < y is p(y) =

12 (y — 2z)~¥ and the factors (B, — z)~% of

v
/ w(y) dy, and we may establish its analyticity instead of that of p’(y) = w(y).
Bm

m m
Obviously p(y) is equally the probability of Z B,‘z,z‘ <y Z :cf, , if the z,; -+, zn, are
p=1 p=1

m
equidistributed over a spherical surface Z zZ = 12, with any given r > 0.
p=1
Our hypotheses concerning y imply By, > y > By, for a suitablev =1, --- , m — 1.
Consider now the expression

m
— N\ 2
oo o] At
& 2 T 2
Joy BHIRSY ) T

Transforming to polar coordinates, we obtain

fly) = f e T ply)r™Ldr
0

= 2,,,] e rmldr.p(y).
)

(Zm as before.) Hence it suffices to establish the analyticity of f(y). Now on the other

hand
_% e
3 (Bu—w)zas 3. (y—B,)zl
“21( ,.-v)z,._"_%,“ v—By)z,
— % w2/ 1Ba—
_ 1 f f ¢ ui Vu! 1Bumyl dw; +++ dwp, .
s v m
“I;II‘B‘:—?H n21w3§u-§+lw‘2‘

(We introduced the new variables w, = v | B — y|zx.) And this expression is clearly
analytical in y, since By > y > By.1 . )
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We shall need only the fact that w(y) possesses $m continuous derivatives at
these places. (m will be assumed to be even, cf. below.) Its behavior at
y = By, -+, B, will follow from our subsequent results in all cases where we
need it.

In order to determine w(y) from (1), as we now propose to do, it is very con-
venient to assume that m is even. We therefore make this assumption, and
shall maintain it throughout most of what follows.

Consider a o % By, -+, Bnin By 2 4o = Bn. Then B, > y > B,y for
a suitabley =1, --- , m — 1. Now put
z2=yo+ (t real and > 0),

form (1), take the imaginary parts of both sides, and let ¢ — 0.
Consider first the left-hand side of (1). Since w(y) possesses 3m continuous
derivatives at ¥y = yo, we have

im—1

wly) = é 0y — y0)* + e(y)ly — yo)*"

with a bounded e(y). Clearly

1 [d*
%= 5 {W “"y’}m

Thus, since w(y) is real, all 6; are real and e(y) is also real.

Compute now the contribution of each one of the im + 1 terms in the above
expression for w(y) to the imaginary part of the left-hand side of (1).

The last term, e(y) - (y — o)'™, gives

B By —_ im
3 @-w— i)~ w"dy = sf (M> e(y) dy.
B Bw \Y — Yo — U
The integrand is uniformly bounded, and so the reality conditions cause the
entire expression to — 0 for £ — 0. Hence the contribution of this term is zero
for t — 0.
The other %L terms correspond to k =0, 1, - -, %1 — 1, the k term being
B,

S| =y — i)™6ly — yo)-dy

m

_ B (y — o)t
=03 G- Y
[k
> (h> @)y — yo — )"
= 0 f = -
e3 Bm (y — yo — at)m %
k

= 6, ?:; (’;)3{@" f:: (y — yo — )" dy}.
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The exponent &k — b — gin the integral is always < (%1' — 1) -0 - %1 = —1,
m

anditis = —1if and only if £ = 3

— 1, h = 0. Consider first a term where

this is not the case, i.e. where the exponent &k — h — %1 < —1. For such a term

the expression &{---} becomes

0 ——
B—h—7+1

—h—3m+1)y=B;

{(y - ?/0 - zt)k y=Bm-

For ¢t — 0 the last factors are bounded and real, and so the entire expression — 0:
for b =0 because of the reality conditions, for ~ > 0 because of (it)* — 0.

Thus only the term k& = %1 — 1, h = 0 can contribute something else than zero

fort — 0.
Now this term is equal to

0im1S {In (y — yo — 3t)}iZ5,

and for ¢{ — 0 this converges to

Oym1S(ew) = nf = T ar (v) "
im—1 im—1 (Ln . )' dytnt wly o
5 !

Thus the imaginary part of the entire left-hand side of (1) converges for
t — 0 to this expression.

The right-hand side of (1) is easier to discuss. The imaginary part under
consideration is now

§— et =3I B-w-?
V&lwf—%—u) g

Considering™ (its y is our yo + 4t), this converges for ¢t — 0 to

m

[ i — B =T
p=v
/‘/H iBM - y0|
p=1

14 This evaluation {In (y — yo— it)}::g:n — 17 is based on ¢ > 0, and the fact that y moves
on the real axis from B,, to B; . It has no connection with?2.

15 The square roots of the (real and) > 0 quantities

15

I B — w™

Bi—yow=1--,v), yo—Biw=v+1,+--,m), and HlBu—yol

=1

are taken to be > 0.
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If v (hence m — v) is even, then this is zero. If v (hence m — ) is odd, then

1
/‘/HIBn_yOI
p=l

r { gint w(y)} =0 if v is even,
(%’ - 1)! dyi 1

/‘/ H [BM - yOI
a1

Simplifying this, and writing y for y, , and also restating the definition of v gives

)}(m—'u—l)

this is equal to (—1 Thus (1) becomes the following

equation:

y=to _ (_1)i(m—v—1)

if v is odd.

gt =0 if v is even,

s @)
: 1
/15 -l

dy}m—l
B,>y>B,u,v=1,---,m — 1.

m
(*2‘ B 1)
2 = (=1)}m—-1 ~ if v is odd,

Observe finally, that if we put
Ay = II & - B,
-
then this product has v factors < 0 (u = 1, ---, v), while the others are > 0.

So

even

=
Aly) 20 for Y dd ’

and in the latter case
IIl IBM - yl = -?I(y)
=

It is clear how we may now rewrite (2).
We are now in a position to determine the behavior of w(y) aty = By, -+ , B,

too, since we know how its 7—; — 1-th derivative behaves in the immediate

vicinity of these places. (2) shows that it is singular there, and that the nature
of the singularity depends on the number of the , for which B, is equal to the
y in question, i.e. on the multiplicity of this root of our polynomial ¥A(y).

In our actual application (to v = ¢, cf. the beginning of this section) the
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B, are pairwise different, i.e. all root multiplicities of %(y) are equal to one. A
further special case, which bas a certain interest of its own, is when the B, are
equal two by two, but otherwise different, i.e. all root multiplicities of UA(y) are
equal to two. In the discussion which follows we shall therefore assume that
one or the other of these two cases occurs.

$m—1
In the first case dg - w(y) has on each side of a y = B, one of these two

behaviors: It is identically zero, or it is singular, of the type B S . Thus
Yt \/[ B, — y|
it is at any rate integrable. Consequently gt w(y) is continuous on each

side of y = B, , i.e. for both y = B, = 0. Successive integrations give now
k

that all d w(y), =01,--

3

— 2, are continuous for both y = B, + 0.
B,>B;=By>--->B,1=B,. So

Fm—1

' 2
In the second case we have B, =
the v with B, > y > B,y is necessarily even, and g w(y) is identically zero

m—2
for all of (2). Consequently —— w(y) is again continuous on each side of
dyim 2

y = B,,i.e. for bothy = B, = 0. Successive integrations show again that all
k
jkw(y), =0,1,---, %L — 2, are continuous for both y = B, + 0.

We must therefore discuss only how much the d" w(y), k=01, rg -2,

change fromy = B, — Otoy = B, + 0.
Let us return to the procedure by which we derived (2) from (1). We put
again

z2=1yo+ 1t (t real and > 0)

and let { —» . But we consider now (1) itself (and not merely its imaginary
part), and we choose a y, = B, .

Consider first the left-hand side of (1), always dlsregardmg terms which stay
By+ta

bounded for ¢t — 0. Then we can replace the integral f of (1) by any
By, By—a

with any fixed ¢ > 0, and this is equal to

fB,,—O fB.fhl
By—a By+0

We choose this @ > 0 so small that no B, ¢ B, lies between B, — a and B, + a.
k

TLe. all (%k wy), k=01, --- ,g — 2, are continuous from B, — a to

B, — 0 and also from B, + 0 to B, + a.
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This being the case, we can evaluate the above sum of two integrals by 7—; -1

successive partial integrations. Thus we get

m Y y=By—0
{m—2 § -2 - k ! 1tk dk
~ N 7 (y— B, — i)t &
& (m 1)‘ (y it) a7 w(y)
2 : y=By—a
==By+a
m—2 (? -2 — k)' dk ’
lc;() m—'— (y — B, — it)_*mﬂ-‘-k d—y" w(y)
(5 - 1) ’ y=By+0
1 By+a e d}m—l
]; (y — B, — 1t) ldyTn—:l w(y) dy.

In the first two lines the y = B, & a terms are bounded for ¢ — 0, therefore
only the y = B, + 0 terms need be kept. Then the first two lines give

m
tm—2 (5 - 2 - k) ' dk y=Bp+0
E — (_it)_*m+l+k {—k w(y } )
k=0 (@ _ 1) : dy v=B,—0
B !

up to terms whi(;h stay bounded for ¢ — 0. Consider now the third line. We
m—1

d . . .. C2
k that the ——— its int d b d by ———= (f
now that the dgi w(y) in its integrand can be majorized by Ty = B.| (for

a suitable constant ¢, , cf. our discussion preceding the present one). Thus the
integral in question is majorized by

By+a
f ly — B, — it| 2|y — B, |Hdy,

By—a

hence a fortior: by

[ 1v=B—itlPaly — B Hay

L] .
= czt_’f lw— 4|7 u|du

0
17

o du
-
no'\/(u2 + 1)'|u|
j"” dv -
= C —_— .
ho Vo F1
. . . y— By
16 Introduce the new integration variable u = -

17 Introduce the new integration variable » = V| u |.
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388
Since the last integration is obviously finite, the entire expression is O(t Y for

t—0.
Consequently the left-hand side of (1) is equal to

y=By+0

fm—2 (g - 2 - ’k) ' : dk
ey—dmtitk ] O 1
2 i () 0w,

2
k=0 (g——l)!

fort—0 (For B, = B;or B, the w(y) aty = B, + O or B, — 0, respec-

tively, must obviously be taken to be zero
Consider now the right-hand side of (1).

We first suppose the B, are pairwise different. The right-hand side in ques-

1

, e O(H).

II(BM_Bv_'Lt)
>..+> B.,=B,. Sowe

tion is

pu=1

Secondly let us consider B, = B; > B; = By
, 2) The right-hand side of (1) becomes now

may assume v = 2\ ()\ =1,
(The sign is determined by™.) Soin our case

a rational function, i
H (Ba — 2)
1 }m—)\ _
it is 1= (=1) (—it)™ + 0Q1).

1
, L.e.
H (B — Ba - it) H (Bak — Ba) - H (Bax — Bax)

k==l
Comparing these with our above expressmn glves therefore (for t — 0)

im—2 (%L -2 - k) y=B,+0
2~ ) (il o)}
k=0 m y=B,—0
= 0™ in the first case,
(=pm>
= =3 (=) + 0(t™?) in the second case.
H (Bak — Ba)- H (Bax — Ba)
it)"'. Hence the O(t ™)

In this formula the left-hand side is a polynomial in (—4t)
terms on the right-hand side must vanish, and otherwise all powers of —1t must
Consequently

have the same coefficient on both sides
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must vanish, except in the second case for the one value of k with

—Jg +14+k=—1ie.k = %z — 2. So, with this one exception, we have

d* d*
{(Wc w(y)}v—BuM - {d_y" w(y)}y-n,_o .

And in the exceptional case (second case, v = 2\)

m—2 y=By+0
{j e w(y)} = (—'l)im_)\ <1—g - l) | 1
—B,—0 H (Bax — Ba) H (Ba\ — sz)

k

Thus in the first case all derivatives %k wy),kt=0,1,---, g — 2, are con-
tinuous even at y = By, --+, Bn.

In the second case the same is true fork = 0,1, -+, g — 3, but the deriva-
tive with k = %L — 2 behaves differently for y = By, ---, B, . Indeed, for

y = Ba_1 = Ba ()\ =1,..-, 2) this derivative is continuous for both y =

B =+ 0, but it increases from By, — 0 to By, + 0 by

1
(_1)}”‘—)\ m 1)1
'(2 ) II (Bw — Ba) II (Bn — Bu)

k
(At y=B1+0and B, —0 the w(y) must be thought to continue with the
value zero.)

These rules, together with (2), determine w(y) completely.

6. First special case. We consider the first special case, where the B, are
pairwise different. We immediately specialize further, toy = ¢, i.e.m = n — 1,
B, = cos ﬁn"_" (u=1,---,n—1). (Cf.the beginning of the preceding section.)
Since m must be even, n must be odd. The rules of section 5 determine

; . _
w(y); in particular all derivatives g?ﬁ‘ w(y),k=0,1, .-+, n 3 !

where continuous, beginning and ending with zero at y = B; and B,.,
respectively.
In the even intervals

— 2, are every-

B,z y = Bs, Bizy=2Bs, :,Bi3=y 2 Bno,
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Hn—1)—1
the derivative ———— w(y) is zero, i.e. w(y) is a polynomial of degree

dy*(n—l)—l
$(n — 1) — 2. In the odd intervsils
Bizy 2B, Bsz2yzBy, - ,Bna=y = Bp,
we have
gt Gh—-—1-1! 1
dyi—i w(y) = £ p VA

(the sign = is alternating (—1)!" 27" (—1)¥* =2 ... 1) where

20 = T (1 - ).

proie

Another expression for 9(y) may be found by the following method.

imp —mp

sin (n¢) e _ Z Fni—twe
sin ¢ e — g =0

Clearly

is a polynomial of cos ¢ = 3(e” + ¢*) of degree n — 1, with the highest co-

efficient 2"". For ¢ = %”,;4 =1,---,n—1,sin (np) = 0, sin ¢ # 0, hence

s__lgirfmp) , as a polynomial in cos ¢, has the same roots as A(y).. A(y) is a poly-
(4
nomial of degree n — 1 with the highest coefficient 1. Consequently
Acos p) = L S0 (ne)
21 sin ¢

This formula allows one to compute A(y) quickly, examples are
n=3 Ay =y -4
n=>5 Ay) =y' — ¥ + &,
n=T:UAw) =" — '+ % — &

The number of odd intervals, on which integrations must be carried out,
is #(n — 1), but since those which are symmetric with respect to 0 require the
same computations, only 2(n — 1) or ¥(n + 1) must be considered. So there are
1,1,2, --- such intervals for n = 3,5, 7, --- respectively. The integrals are
first elementary (arcsin), then elliptic, then hyperelliptic.

Numerical computations for n = 3 are immediate; for n = 5, 7 they have
been carried out with considerable precision by B. 1. Hart.

H(n—1)—1 1
Aty=B w(y) has a singularity of the type \—/*[——l (cf. the end

L dy}(rr—l) 1

of section 5), while all (Z/k wy),k=01,---, ¥(n — 1) — 2, are continuous.
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At y = Byand B,_;, in particular, they are zero. Hence it follows by successive
k

integrations that the order of vanishing of j—yk w),k=0,1,---,3n—1) — 2
aty=Byand B,,is3(n—1)—1) —k - 3= g — 2 — k. In particular

for k = 0 we find that at its maximum and at its minimum (Bl and B,.,,

i.e. &= cos :-;) the order of vanishing of w(y) is g -2

Since w(y) has this property, and since it is obviously an even function of y,
R. H. Kent has suggested approximating it by a series expansion of the form

© in—2+h
3) wy) = 2 a (cos2 - - y2>
Computations by B. I. Hart, not yet published, have shown that even the use
of the first four terms (h = 0, 1, 2, 3, the ax being determined by the condition
of normalization and by the first three even moments of the actual distribution
given in section 4) give excellent approximations. The use of the formula (3)
suggests itself likewise for even values of n.

7. Second special case. We consider now the second special case, where
By, =By>B;=By> :--> B, = B,. This has no immediate bearing on
our original problem (cf. the preceding section), but we shall nevertheless discuss
it for the two following reasons. First, it is hoped that the reader will find an in-
dependent interest in the simple and complete results which can be obtained in
this case. Second, there are various modifications of our original problem, which
lead to this case. For example let the z;, ---, z, in our original problem, as
described in section 1, be complex numbers instead of real ones, replacing all
squares by absolute value squares. Then one verifies easily that all character-
istic values A, - - -, A,—1 are doubled, and so our first case goes over into our
second case. (This amounts to replacing our quadratic forms by Hermitian
forms, cf.*) It is easy to imagine two-dimensional problems where this set-up
is natural.

B

WeputC)‘=B2>\_1=B2)\f0r)\= 1,'*',%,80that01>02> >Cl,,.

are the only restrictions imposed.

EveryyinB, 2y =2 Bn,i.e.inC; Z y = Cyn, liesin aninterval C\ = y 2
im—1

Crs1i.e. By = y 2 Bayyi.  That is the v of (2) is always even, and so a w(y)
is zero in every one of these intervals. Therefore w(y) is a polynomial of degree

7—5 — 2 in every one of these intervals. We have already shown that w(y) is

18 We omit the simple discussion of n = 3, which must be excluded from this result.
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not the same polynomial in each interval. Thus w(y) is represented by %L -1

polynomials of degree ™ _ 2in the T — 1 intervals

2 2
Cizy =0, Coz2y=2Cs, - ,Cina =2y = Cinm.

We could try to obtain explicit expressions for these polynomials by a direct
application of the results at the close of section 5. A characterization of the
distribution can, however, be obtained in a more elegant way by an indirect
procedure.

Consider an arbitrary function F(y). We wish to express its mean

C1
30 = [ Swew dy.
im
If we can do this for all F(y) then the distribution is completely characterized.

We select first an %1 — 1-fold primitive function of F(y), i.e. a function G(y)
with
d}m—l
i i O) = F@).

Of course ®(y) is determined only up to an additive polynomial of degree 7—; -2

in y.
Now the above expectation value becomes
Cy d}m—l
) = gy O(W)w(y) dy

im 1 C\—0 $m—1
2 fc T Gyely) dy.

S Jere o dyim
k

Since all (%c wy), k=01, .- — 2, are continuous from Chy1 +0to Ch — 0
Y

m
"2
, gl — 1, we can evaluate each integral of the above sum by

gl — 1 successive partial integrations. Thus the following expression obtains:

tm—1 (im—2 dam—k~2 y=Cr—0
S{E o f 6w o)

forallx =1, ---

A= y=Cr+110
C m~—1
+ (-0 [ o) 2 gy oW -
Cx
Considering the definition of &(y) as an 7; — 1-fold primitive function, the
kl
; = O®W), k' = ceey 7—; — 2, are everywhere continuous. This corresponds
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tok'=%‘—k—2,k=o,1,-

%’ — 2. Hence the first line can be rewritten

as
im im—2 X m—k—2 d y=C)\+0
— 1 .
5 oS ew) {Lew)
k
(For C\ = Cyor Cyn the g?? w(y) at y = C1 + 0 or Cy,, — 0, respectively, must
obviously be taken to be zero.] Owing to the results of section 5 all terms

withk =0,1, ---, m_3 vanish, and the term with k = —g-" — 2gives

2
1
- C) H (Cx — CW)

im
-2 (=D (=1" (’—g - 1) =
A=1 H

im
=3 (- '(§ - 1) L ®(C).
A=1
II € —cy I @ -cy
{m—1
The second line vanishes, since g w(y) is zero everywhere, as observed above.
Finally
— im _ 1
§) = ); (_1))\ ' (7_; - 1) !x_1 im ®(Cy).
B [T —cy II @ - ¢
k=1 k=N+1
For
Blz) = ;III (2 — C)
we have

im
{% Qi(z)}ﬁcx = kI=]l:(k;£)\) (Cr = Cw)

A—-1 im
== —con II 6 = cw.
k=1 k=\+1
Therefore the above formula can also be written

. &)
50 =(F-1)1% e

Observe that the right-hand side of the above formula (which can also be
easily expressed in terms of determinants) is a well-known approximate ex-
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$m—1
pression for i ®(y), as a (repeated) difference quotient of the values &(C)),
A=1 .-, g It is therefore very satisfactory that this expression gives the
mean of
d}m—l
§ly) = @*’”—"1 &(y).

Appendix. We return to the normal distribution of z,, - - -, z, as described
in section 1, and to the quantities s’, 8,  given there. We denote means with

respect to that distribution by ( ---).
It was observed by B. I. Hart and mentioned by J. D. Williams® by com-

2
paring the known expressions for their moments, that every moment of 7y = %
8
is the quotient of the corresponding moments of 8° and of s*. That is
2p <2p
(5_>___5= (=012 )
s pori

This indicates some kind of independence relation involving &* and s> The
considerations which follow are intended to clarify this situation.
The above relation may be written
P = 7,
or, more generally,

st qP = sty

We shall prove this by showing that s and » are statistically independent.
We can, as in section 2, make the mean ¢ = 0, i.e. obtain the z;, -+, z,
distribution law

n —f: z2/202
e wE1 ™ dry - dog .

And then, again as in section 2, perform a linear orthogonal transformation,

. . ! ’ . . . . .
carrying z1, -+ - , T, into, say 1, --- , £, which leaves the distribution law in
its original form

_” 12/942 ’ ’
e Gyl oo da,
and makes
N B S
§ = - E.’C,‘,
s
n—1
A,z
" “‘é W

n = —_—

n—1 22

PIEA

pross
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. ’ . 2 ’ ’ . .
Since z, does not occur in s°, » we must use only the z;, -- -, ,-1 distribu-
tion law

n=l
—1 — Y z’2/942 ’ !
e A 4y - dh

. . . ! ’
Now we introduce polar coordinates with respect to 21, +++, £,—1. These
consist of a radius r with

n—1
r 2
r= Z Ty
p=1

and n — 2 angular variables ¢, - -+, ooz, Which can be chosen in various
ways, and which we need not describe more closely. At any rate

’ ’ —2
dzy + -+ dz,1 = r" dr’w(gal y "ty ¢n_2) dey « - - dons

where we need not determine the weight function w(p;, -+, ¢a—s). Conse-
quently the distribution law is
—1 —r2/202 n—!
c® 18 20 P 2 drw(¢1 , ¢”_2) d¢1 e d¢"_2 .
Thus the coordinate r and the coordinates ¢y, - - - , ¢n—2 are independent of each
other.
Next
1
sf==7

n
and 7 is a homogeneous function of z; , - - , z,_; of degree zero, i.e. it is inde-
pendent of 7. So s is a function of r alone, and 75 is a function of ¢1, -+ , gn

alone. Consequently s and 7 likewise are independent.

Added in proof:

After this manuscript was completed, Dr. T. Koopmans informed the author
of several results of his own, which he obtained in connection with other statistical
investigations. They have many points of contact with this investigation, and
will appear in the near future in the Annals of Mathematical Statistics. The
author wishes to express his thanks to Dr. T. Koopmans for his communications.



