AN ITERATIVE METHOD OF ADJUSTING SAMPLE FREQUENCY TABLES
WHEN EXPECTED MARGINAL TOTALS ARE KNOWN

By FrebpErIcK F. STEPHAN

Cornell University and U. S. Census Bureau

1. Introduction. In a previous paper by W. Edwards Deming and the
author [1] the method of least squares was applied to the adjustment of sample
frequency tables for which the expected values of the marginal totals are known.
From observations on a sample the frequencies n;; for the cell in the ith row
and jth column of a two dimensional table and the r row and s column totals,
n;. and n_;, are obtained. These frequencies are subject to the errors of random
sampling and it is desired to adjust them so that the row and column totals
will agree with their expected values, m; and m_;, which are known. The
adjustment involves the solution of the r + s — 1 normal equations

ni.>\i.+znii>\.i=mi.-ni.: 1=1,2---,r
7

1) .
Z‘:niixi-"'n.i)\-i:m.i—n.iy i=1L2---,8—1

where the A are Lagrange multipliers from which are calculated the adjusted
frequencies ’

() mi; = ni(1 + M.+ ).

Similar equations arise in the three dimensional case.

A method of iterative proportions was presented for effecting the adjustments
more conveniently than by solving the normal and condition equations, and it
was stated that ‘“the final results coincide with the least squares solution.”
This statement is incorrect, for although the adjusted values satisfy the condition
equations, they do not satisfy the normal equations and hence they provide
only an approximation to the solution. The method of iterative proportions has
several interesting characteristics that will be discussed in a later section.
This paper now presents a method that converges to the values given by the
least squares adjustment and is self correcting. It can be used with any set of
data and weights for which a least squares solution exists. The two-dimensional
case will be considered first.

2. The two-dimensional case; expected row and column totals known.
Assume that a sample of » items is drawn at random and cross-classified in a
table of r rows and s columns. As in the previous paper, let #;; be the frequency
in the 7th row and jth column of the two-way frequency distribution. Indicate
summation by substituting a dot for the letter over which the summation is to
be performed. Then =, and n ; are the marginal totals for the ¢th row and
jth column respectively. Let m; and m.; be the expected values of these
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marginal totals calculated from other information or from theoretical considera-
tions, and c;; a set of constants known or estimated to be proportional to the
reciprocals of the weights of the n;;, i.e. proportional to their error variances.
Since the weights are positive, the c;; are non-negative and finite. It is assumed
that the set of weights is such that for the given data an adjustment exists.
The least squares adjusted frequencies m;; can be computed from the given.
numbers ¢;;, n;;, mi., and m_; by a series of approximate adjustments in a

manner now to be explained. Let m{? be the pth approximation to m;;. In

conformity with this notation m{y = m;;. Let

@) . &P =my—mP, &P =m, —mP, dP =m;—mP,

be corrections that must be added to the m® to produce the least dquares
adjusted frequencies. As d — 0, m® — m. Let A\{” and A"’ be constants
determined arbitrarily between the limits set by equations (5) to (7). Any one
A may be fixed arbitrarily and kept constant through successive approximations.
Note that A{” = A’ = 0 and that, if at every step we set \¥’ = 0, the A®
are approximations to the Lagrange multipliers in the normal equations. After
p steps in the iterative process the approximate adjusted frequencies will be

(4) miP = ni; + o MP +AP).

The following conditions, derived from (19), (23), and (24), are sufficient to
make the successive approximations converge to the least squares adjusted
frequencies:

) —1) —1
P =P+ 6P dPV /e,
P _ y(p-1) (p) 3(p-1)
AP = AP + 6P dP /e,

) 0<o”, 0<6P, 6P+ <2

(5)

and, for at least one pair %j,
(7) 62@r ™) + 6PEF ) > 0; 6P + 6P < 2.

The ¢’s are introduced because in actual computations the successive approxi-
mations A\ can only bé calculated to a limited number of digits and because
the adjustment may progress more rapidly if the computer is permitted to use
his judgment in determining the approximations as he observes the ‘course of
previous approximations.

The process of adjustment is continued until the d{” and d‘” becorfe suffi-
ciently small to provide the desired degree of agreement between the adjusted
and expected row and column totals.

3. Example. The following example shows the steps in the adjustment for
a table of 3 rows and 4 columns with 6{” = §» = 1:
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Iy - mij d(:i) Gi | AW m(;i) d(:i) d(;i) Jeis A2 "'(:i) d(;) mii

) 2) ) @ (5) (6) Y] ®) © (10) iy | a2
11 783, — — 75 — 777.5) — - —_ 772.9] — 771
12| 7426] — — 455 — 7505.6] —, — — 7496.3] — | 7497
13| 4709 — — 358 — 4712.6 — - — 4709.6) — | 4711
14| 2145 — — 176, — 2055.8] — - — 2051.3] — | 2049
21 517 — — 52| — 528.9] — — — 529.5| — 529
22 928 — — 95 — 973.4) — — — 978.3] — 979
23 622| — — 56| — 639.5, — — — 643.1] — 644
24 703] — — 70, — 688.7 — — — 691.9) — 692
31 207, — — 19| — 200.3| -— — — 201.1 — 201
32 373 — — 38 — 369.1] — — — 372.3] — 373
33 337 — — 31 — 328.7 — — — 331.7 — 332
34 425, — — 39 — 394.5| — — — 397.5] — 397
.1} 1507f 1501 —6| 146|—.041] 1506.7| —5.7| —.0390| —.0800| 1503.5 —2.5; 1501
.2| 8727) 8849 4-122| 588+ .208| 8848.1f 40.9| +.0015| +.2095 8846.9| +2.1| 8849
.3 5668 5687 419 445/+.043| 5680.8) +6.2| +.0139| +.0569| 5684.4| +2.6| 5687
.4 | 3273 3138 —135 285/ —.474! 3139.0| —1.0| —.0035| —.4775 3140.7| —2.7| 3138
1. | 15063| 15028 —35| 1064|—.033| 15051.5(—23.5( —.0221| —.0551| 15030.1| —2.1|15028
2. | 2770, 2844 74| 273| +.27| 2830.5(4+13.5| +.0495 +.3195| 2842.8 +1.2| 2844
3. | 1342 1303 —39| 127/ —.31] 1292.6/410.4| +.0819] —.2281| 1302.6[ +0.4| 1303

19175 19175 0| 1464 — | 19174.6| +0.4] — —_ 19175.5 —0.5119175

Columns (1), (2) and (4) are given. Columns (3) and (6) to (11) are calcu-
lated in succession using equations (3), (4), and (5). It is not necessary in
practice to record the s or even determine their values since the A may be
determined directly at convenient values approximately equal to their corre-
sponding A{*™" + d{*P/¢c;, and AP + d?™V/c.;. The final adjusted fre-
quencies given in column (12) are derived by another repetition of the adjust-
ment process but the amounts involved are so small that they can be calculated
mentally and the n;; rounded at the same time.

4. Computing procedure. The computing procedure may be set up in any
of a number of ways to meet the preferences of the computer and the charac-
teristics of the problem. Ordinarily it is desirable to make every number
positive and the procedure as nearly routine as possible.

For two-dimensional adjustments the following procedure of computing alter-
nately by columns and by rows is convenient:

(a) Set up a table of the c;; in r rows and s columns. Enter the c;. in the
s + 1 column, the ¢ ; in the r + 1 row, and ¢.. = Zc;, = Z ¢.; in the com-

1 7

mon cell.
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(b) Calculate the quantities 4;, = (d{”/c;) + aand A.; = dP/c.) + a
and enter them in the s 4+ 2 column and r 4+ 2 row. The constant a is selected
at some value that will make all quantities in the computations positive and
may be any convenient integer greater than 2 max | d{”/c;. | or 2 max | d$”/c.; |

(c¢) Calculate the factors ui? approximately equal to the A;. — }a and enter
each on its correspondmg row in the s 4+ 3 column. Throughout the computa-
tions the u” are merely \;; + 3a.

(d) Take column j and multiply each ¢;; by its corresponding u{" accumu-
lating the products in the calculating machine. Divide the sum of products
by c.;, subtract the quotient from A ;, and record the difference x$” in the jth
column on the »r + 3 row. Repeat for each of the other columns.

(e) Take row ¢ and multiply each ¢;; by its corresponding 1 accumulating
the products in the calculating machine. Divide the sum of products by c;. ,
subtract the quotient from A, , and record the difference u{¥ on the ith row
in the s + 4 column bordering the table on the right. Repeat for each of the
other rows.

(f) Repeat steps (d) and (e) alternately until a satisfactory degree of stability
is reached in the u;. and u ;. Then compute each adjusted frequency as follows:

® mff) = c.,(p(’) + “‘(’_,) — a) + ny,

taking either u{® = u{*™ or u$” = u{?™ as the case may be.

() The computations may be checked at any step by computing
) E pPei= ; 4c; Z PV = E pi? e,
or

(10 XuPe =D dic = Lul Ve = ac. = L pl Ve,

(h) At any step a constant may be added to all the u{” and subtracted from
all the x{*; this'may be necessary to keep the u’s all positive. It has no effect
on the value of a to be used in (8).

(i) If it is desired to “inflate” the adjusted frequencies (D m:; = 2. n;)

w7 i
first multiply each n,;, n;. , and n_; by the factor 2 m;;/2_ n:;and then proceed
¥ %]
as above using the products in place of their corresponding n;;, n;. and n_;.

(3) If before the iterative process has reached an acceptable adjustment it is

desired to force a satisfaction of the condition equations, compute:

(1) m% = ciw? + 4P — @) + ni; + @iPc; + dPe)/e..,

in which either the d{” or the d?’ are all zero.

5. Adjustments in three dimensions. If the sample is cross-tabulated in a
three-way frequency distribution, there are two cases that are not reducible to



170 FREDERICK F. STEPHAN

two-way distributions. These are designated Case III and Case VII in the
earlier paper {1]. The adjustment equations are, respectively,

mf,pk) = nip + ca\® + AP + AP
mB = i + ciaMP + AR +2D),

subject to conditions on the choice of the A corresponding to equations (5), (6),
and (7). For Case III, the conditions are that

(3) 00L&, 06, 06, 6P +07 4+ 6P <2

and for 4t least one triple 5k, 67 (d{*™) + 6P (@) + 6P W@E™)? >
0 and 6{” + 6” + 6 < 2. Similar conditions apply to Case VII.

The computing procedure described in Section 4 can be extended readily to
the three-dimensional case. For exa,mple, in Case VII calculate p,,, approxi-
mately equal to (d /c:;) + a and u{} approximately equal to (d{% /ci.x) + %a.
Then multiply each c;; in the column jk by its corresponding (p(l) pﬁ,‘,,’)
accumulating the products in the calculating machine. Divide the sum of the
products by ¢ i and subtract the quotient from (d'}/c.;i+) + a. Record the
difference as u'% and repeat the process for every other jk column. Take
u$?) = ui} and repeat for each ¢k column to obtain u{} ; then take u % = u$}
and repeat for each 7j column to obtain u{;’ and so on. The final adjusted
frequencies are

(14) ms:”k = N + cuk(ﬁ‘(p) (P) + l"(p) — a).

(12)

6. The general case. The iterative method can be extended readily to
more than three dimensions and to various systems of condition equations. A
simple general notation may now be introduced. Let the cells be numbered in
any order from 1 to ¢ and for the 7th cell let n; be the value given by the sample,
c; a finite positive constant known or estimated to be inversely proportional to
the weight of n;, m; the least squares adjusted value to be determined, m{”
the pth approximation to m; , d = m; — m{®, and m{® = n;. Assume that
the values m, of certain linear combinations of the m; are given, i.e. there is a
system of consistent linear equations of condition numbered in any order, the
oth equation being ‘

(15) 2 biini=m,, 2 bi, >0

bis and m, being known a priori. The corresponding linear combinations of the
n; and d{” define

(16) Ne = Z bl’vni) dﬁp) = E biadi('p)v

Let
(17) Ce = Z b?act'-
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The pth approximation to m; is

(18) m? = n; + ¢ Z bie AP,
where
(19) AP =2 6P e, A =0,

the 6, and therefore the A", being arbitrary for a finite number of steps,
say p’, but determined thereafter so that

(200 2 2 07 (d ) /ee — 30 (X b 67 d* /e)? > (d")/ (e, H),
L4 [ 4

r being a value of o, chosen at the pth step, for which (d*7")?/c, is a maximum
and H a finite number greater than 1 fixed prior to the first step as large as one
will. That this condition can be satisfied may be shown by putting 0P =
1 and 6 = 0 (¢ # 7).

A weighted average of several of the possible selections of 6" satisfying (20)
will also satisfy (20), positive “weights’ being assumed. Let &k added to the
superseript represent the kth such selection and let «'*® > 0 be a constant for
“weighting” the kth selection in the weighted average which may be chosen
arbitrarily except that ; o®® = 1. Then, if the kth selection of 6{” is repre-

sented by 6, the weighted averages are 6" = > a®Pe®P  Substitute
k
them in the left-hand side of (20),

2 36O @) e, — 2 0s (2 bicd”” 47V /co)?
(21) =9 E zk:a(p.k) osp.k) (d'(,p—l))2/c‘ _ E‘ c (2 ; bie a(p.k) ogp.k)dsp—l)/c‘y
= za(p.k) (220£p.k)(d5p—l))2/c‘ — Zci(; pas L Zbicosp.k)dip—l)/cc)ﬂ’
k L4 i 4

which by the Cauchy-Schwarz inequality
> Z o PP (2 Z o(p.k) (d(p—l))z/c )
— T - [ (4 (4
— z; c‘(; a(p.k)) { ; a(p.k)(; bis aip.k)dsp-—l)/c')2}
- TP (2 T P e — T bt e’
k '4 i '
>3 «"P @)/ (eH) = @)/ (c.H).
k

A simpler and more convenient but somewhat more restrictive condition may
be derived as a special case of (20). Let 6" = 0 except for a set of one or
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more o so selected that b;,/b;;» = 0 for every ¢ and every pair ¢’ and ¢” in the
set. Then (20) becomes
(22) 2 {2687 — (057} (@) eo > (PN (e, H).

Differentiating partially for a maximum with respect to one of the 67, we find
that this special case of the condition will be satisfied if for one ¢ in the set,
say w, such that

(23) @)Y /er > (@) /(e/H),
the value of 6"’ is chosen in the range,

(24) 1/@vVH) £ 6P <2 - 1/(2/H)

and for every other ¢ in the set
(25) 0<6” <2,

all 6” not in the set being zero. A weighted average of such values of 6 will
satisfy (20) whence (6) and (7) follow.
In practice values of 6 satisfying (20) may be selected conveniently by the

following procedure:
(a) Select a set of ¢ for at least one of which §'” satisfies (23) and for every

pair of which b;b;,,» = 0. In so far as this restriction permits choose the o
corresponding to the larger values of (d*™)%/c, .

(b) Determine values for each 6/ in the set approximately equal to 1.
Until other values are assigned to them assume all other 6" = 0.

(c) Choose a o not in the set, say p, for which (d{*™)*/c, is relatively large
and select a value for 6" such that
(26) 0P = {d — 203 cibi, b 0P Je, } /AP

i o¥p

(d) Having changed 6/ from 0 to a value approximately satisfying (26),

continue with other ¢ not in the set letting p in (26) represent each in turn,

The work may be terminated at any stage leaving some 6" = 0.

7. Convergence of the adjustment. The condition equations may be written
in the following form

@7 2 bid® =dP,

as a system of consistent, but not necessarily independent, linear equations.
They may also be written as conditions on the m;. The least squares adjust-
ment minimizes the quadratic form

(28) SO =3 d") /e

B
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subject to the restraints (27). Since the ¢; arc positive, S is pesitive definite,
and therefore a minimum exists and is non-negative. The values of the da®
that minimize S while satisfying (27) are m; — n;, the n; being known and
the m; being the least squares adjusted values that are to be calculated.

If r is the rank of the matrix || b; ||, then from (15) and (16) it follows that
r of the d{” may be expressed as linear functions of the ¢ — r other d”. The
latter then constitute a set of ¢ — r independent variables. The normal
equations

(29) a8 /ad” = 0,

are obtained by differentiating S® with respect to each one of them in turn,
one equation resulting for each value of h corresponding to a d; in the set of
independent variables. The normal equations (29) are a system of ¢t — r
independent linear equations and can be written in the form

(30) Ea,'(;.)dﬁm = EB,(h)d§°’ ,

where the first summation is over the set of independent variables, and the
second over the d.” in the r selected condition equations. The right-hand
terms are constants. Since a least squares adjustment exists the equations are
consistent and the rank of the matrix || aig || is ¢ — r. Any di” in the set,
say d, is the quotient of two determinants the divisor being the determinant
| @iy | and the dividend being the determinant obtained by replacing the
airay by 2 Bory d¥. Consequently each d{” whether in the set or not is a

linear combination of the d{” and the sum of the absolute values of the coeffi-
cients of the d” is finite. Therefore

(31) max | di®/v/¢;| < Gmax | d”/v/c, |

where G is (max ¢,/min ¢} times the sum of the absolute values of the coef-
ficients of the d® in the linear combination for which such sum is a maximum.
From (28)

(32) 8 < t max {(d{®)/e;} < G*t max {(d”)*/c.}
whence
(33) @y /e. = 8°/(G").
Consider now the discrepancies
(34) 4P = = m = 47 = 6 b 0P de,

between the m; and the corresponding approximations m{® and write the

quadratic form
(35) 8” = 3 (@) e
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From (16), (18), and (34)

(36) d¥ = dP + o ; bie NP,
and
(37) d® =dP + Z > bigbi .

Hence the substitution of (36) in (27) merely changes (0) to (p) in the super-
seripts, the new equations being consistent by definition and the corresponding r
of the d¢ being expressible as linear functions of the other ¢ — r. Further
(35) is positive definite and hence has a minimum, in fact substituting (36) in
(28) we find that

aS(‘” aS“” a (p) P (p) (p) (p)\2
30T = 300 = oo ST HZE LAV b + e (L bak)
h h h i * ¢

(38) 9 aS(P)
_ (p)y (M) __ —
— ‘fd,(._i) (S(p)+ 2;d,” )‘vp) — ad’(lp) =0

Hence a least squares solution for the d{” exists and it leads by (34) to the same
values for the m; as does the solution for the d®. Since the coefficients a;n
and B, and the number G are functions of the b, and ¢; they are invariant
for the substitution. Consequently (30), (31), (32), and (33) may also be
written with (p) in place of (0) in the superseripts (33) becoming

(39) @y/e. = 87 /(G™).
From (20), (34), and (35)
S? = Z @?/e;

= X @ o= 2 2 b6 a8 e
(40) + 36 (b6 a2 /e,
=‘S(p—l) -9 Zaip)(dip—l))‘l/c’ + Z ¢ (Z b“oép)dip—l)/c’)Z

< 8* P — @)/ (. H), p>p'
and from (39)

(41) S(P) < S(P—l) _ S(P—l)/M < S(P'){l — I/M}p-’P'
where
(42) M = G°H/t.

Therefore, as p — ®,p — p' — ®, 8% — 0, d{” — 0, m® — m, and conse-
quently the successive adjusted frequencies obtained by an iterative process in
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which condition (20) is satisfied converge to the adjusted frequencies that are
obtained by solving the normal equations.

8. Rate of convergence. The computer is not as much interested in the
proof of convergence as he is in how rapidly the successive adjustments reach a
satisfactory degree of approximation. Equations (39) or (41) are of no help
to him. The adjustment may be made in one step, with cvery 8 = 1, (a) if
the condition equations are such that every bibir = 0, ¢’ # ¢, ie. if the
adjustment can be separated into one-dimensional cases when redundant condi-
tion equations are ignored, or (b), in the two and three-dimensional cases, if
the c;; or ¢;; are proportional to the ¢;. and c_; or to theci.., c.;., c.x Or Cij.
cix, and c_j respectively. Except in these and other special cases the rapidity
of convergence depends on the d.* as well as on the || bic; || matrix. However,
it seems that one can make very little use of the d® to determine the rapidity
of convergence without actually computing the successive adjustments or making
some equivalent calculation.

Certain results can be obtained from the || bic; || matrix alone. Returning
to the two-dimensional case and its notation, consider the matrix || ¢;;|| and
define

(43) 8;=cij — ci.ci/c..,c.. = Z Cj-
J

Let the adjustments be made with the restriction that 0.” = 0and 67 =1
when p is even, and 6{” = 1 and 85” = 0 when p is odd. Then.if p > 1

AP = =3 (ci/c.)dd™ = 22 Zf: (cii/e.) (cii/es)d} "™

7
) = 21: ; (3:i/c.3) (rifcr.) dgP ™ (f=12--,7
The sum of the absolute values is

(45) Z1dP | < < b2 d]

where

(46) bi = Z Z:: | 8ii/e.il v.i

v.; being the greatest of the | 8;;/c;. | in the jth column. Similarly for p > 2
(47) S ISu A < b 2] d |

where

(48) by = Z 27: | &ii/cs. | vi.

v:. being the greatest of the | §;;/c.;| in the sth column.
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Assume again the conditions just preceding (44). Let u;. be the minimum
cij/c.;in the ith row. Likewise let v, ; be the minimum ¢;;/c;. in the jth column.
Then since Zd{” = =d” = 0,

(49) Z|dP | =22 = — 22744,

the + and — signs indicating that the last two summations are over positive
and negative values of d”’ respectively. When p is even, of course, all values
of d,(jp) = 0.

From (44)

(50) dP = —; cidFV/c; = ;_ i | dP | feq — ;+ ci | P70 /e,
= ; ci| APV |fe; — 2 2% e | A | Je

=227 c;|dF™|/es — 20 e ATV /e
H H

and by (49)

(51) |di” | < Z’: ci| 4PV |/eq — w, E: |,
2 Tl 1< D111 - o).
Similarly

(53) 2P <210 | (1= Zvy)
7 + 7
Letbs =1 — Zu. and b, = 1 — D v, ;, then
I Fi
(54) 2 1dP | S bsb [ AP | < (Bab)P [ dEP |

Now b3 or i). may be greater or less than b; or b, but, unlike b; and bs , they
can not exceed unity. Let b* be the lesser of b and bsh,. Then under the
conditions stated with equation (44)

(65) Z 7™ | < Z[dP | < B2 [dPP | K002 AP | <02 |dYP
It follows from (40) that
8P = 8P 57 (dP) e, + ; (dP)/e.;
= E, {3 @)/ + ; @) /e

1]

(56) -
< 2 (X1 d ) /min e, + (| dP 1)/min e}

< (221 |+ 14" ) {(1/min ¢:) + (1/minc)}/(1 = BY).
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The reduction in 8™ in g steps of the iterative process is
p+p—1
D =8P — gt = ,.Z 20 @)/ + 2 @) /e
=P L] 1

(57) ot
> :;,, (X 1dP )/ (r max i) + (;ld.(}" )?/(s maxc.,)].

from which, by (55), if ¢ > 1 is odd,

—p Y
69 D2 TVl ar + e (i L),

b rmaxc; SInaxc;
The relative decrease in S® is, therefore, by (56),
D _ D 1/min ¢;, + 1/min ¢ ; -
(59) S—(;i - D +. Se+o) 2 Jl + :

b‘(b“"—l)( L1 )
rmaxc. Smaxc;

If the g steps actually have been taken a better lower limit for the relative
decrease in S may be obtained by computing D from (57) and using (56)
for S®*?. Similar equations can be written using be.

These results can be shown to be valid for an adjustment in which 6{» =
0" = 1 at the first and any of the subsequent steps. They also can be ex-
tended to the three-dimensional cases but not to three-dimensional adjustments
with every 6 = 1.

9. Improvement resulting from the adjustment. The least squares adjust-
ment eliminates a portion of the errors of sampling, i.e. a portion of x*, from
the set of frequencies estimated from the sample. In fact any adjustment that
satisfies the condition equations does this.

Let ¢; be the error in the ith value given by the sample and 8" the error in
the pth approximation to the least squares adjusted value. Then

(60) : W =a+a Z bie AP,

and
(61) 20 e =2 é/ei+2 2 M7 8P — 2 e (2 bA”) .

The complete adjustment makes 6” vanish and therefore, since the last term is
non-negative, 28;/c; < Zei/c; except in the trivial case in which all d{” = 0.
From (37)

©2) > 6P e = 2 /et A (@Y — d).

The last term may be computed readily at any stage in the iteration. If the
sampling is at random, k Ze?/c; is distributed approximately as x* with ¢ — 1
degrees of freedom, where & is the ratio of the ¢; to the corresponding error
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variances of the n;. Therefore it would seem appropriate to compute
k =\, d”, the reduction in x%, as a measure of the improvement achieved in
the final adjustment.

10. The method of iterative proportions. The iterative proportions method
described in the earlier paper [1] implicitly defines, in the two dimensional case,

(63) Mmi; = Ki BN,
the p;. and u; being given by the r 4 s condition equations

(64) m;, = E M. B N m; = E i, BN
1 I3

any r + s — 1 of which constitute a consistent system of independent equations
in r + s unknowns. One multiplier, say u;., may be fixed arbitrarily. Then
for a 2 X s tabls it is necessary to solve an equation of the sth degree. If s = 2,
there is only one acceptable solution, given by the positive root; if s = 3, there
is only one solution of the cubic for which all the adjusted ftequencies are non-
negative. For 3 X 3 and larger tables the adjustment appears to involve the
solution of equations of the tenth or higher degree and there is then no choice
but to use methods of approximation.

The adjusted frequencies given by the method of iterative proportions are not
identical to those given by the method of least squares. When the adjust-
ments are small relative to the frequencies adjusted, however, the results given
by this method approximate those of least squares. For the two-dimensional
case the successive adjustments converge to a set of frequencies that satisfy the
condition equations. The author has not found a proof of convergence or
divergence for more than two dimensions.

I wish to express my appreciation of many stimulating conversations with
Dr. W. Edwards Deming on this and related problems, and of the helpful
critical reading of certain portions of the manuseript by Dr. Joseph F. Daly.
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