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1. Introduction and summary. Suppose that we have two samples £, and
E, from normal populations 7 and x, with unknown means and variances.
Let us designate by 6 the ratio of the variance of =, to that of ma. The two
problems discussed in this paper are to formulate in terms of E, and E:, and lo
compare,

(2) significance tests for the hypothesis that the unknown ratio 0 is equal to a given
positive number 6, , and

(i2) confidence intervals for 8.

Since, on the one hand, these problems are of considerable importance to the
practical statistician and the teacher of statistics, and on the other, they cry
for the application of recently developed theory which is unfortunately not yet
familiar to many practical workers and teachers, the development has been
divided into two parts: Part I, it is hoped, will be intelligible to the above class
of readers; part 11, slanted toward a smaller circle, is more esoteric, general, and
condensed.

More specifically, in part I it is pointed out that any choice of limits on the
F-distribution satisfying the condition that the sum of the areas in the tails
be equal to a prescribed number, leads to solutions of problems (z) and (7z).
After considering and then ruling out the “one-sided” situations in which it is
appropriate to use only one tail, two conditions are proposed (ad hoc and on an
intuitive basis) for the “two-sided’’ case,—a symmetry condition, and a condi-
tion for logarithmically shortest confidence intervals. The second condition
leads to a choice of limits on the F-distribution. From other considerations,—
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reciprocal limits, likelihood ratio, and equal tails,—other choices are advanced.
It is found that all four of these choices satisfy the first condition, and that
furthermore if Ny = N,, where N; is the number of variates in E;, then the
four choices become identical. If N; = N, which of the four tests is “best’’?
which of the four sets of confidence intervals? For defining and answering the
first question in a logically satisfactory way just a little of the Neyman-Pearson
theory of testing hypotheses suffices. For the second, Neyman’s theory of
confidence intervals is called for, and because of its greater difficulty, this has
been relegated to part II. However, the limits determined by the ecriterion
that the test be unbiased turn out to be the same as those which yield optimum
confidence intervals from the elementary viewpoint of §5. Their numerical
values are unfortunately laborious to calculate accurately if N1 # N, , and part
I concludes with some numerical evidence indicating the loss of efficiency in
using instead the easily found ‘‘equal tails” limits. For N; and N, = 10 this
loss is seen to be quite small. It will perhaps bear repeating that if N; = N,,
the “‘equal tails” limits on the F-distribution are the same as those associated
with the unbiased test and that hence in this case all the advantages uncovered
in parts I and II for the unbiased test and the related confidence intervals are
obtained by using the easily available “equal tails’ limits.

In part IT we drop the restriction that the tests be based on a one or two-tailed
use of the F-distribution. By a slight extension of results of Neyman and
Pearson, common best critical regions for testing the hypothesis 8 = 6, against
alternatives 6 < 6,, or @ > 6, , are found. Since the regions are always distinct
for these two ‘“‘one-sided” cases, there is no uniformly most powerful test. In
order to find the most efficient unbiased test some recently published theorems
of the writer are applied to prove that the critical region of the unbiased test
proposed in part I is of type B; .

The fact that the results summarized in the above paragraph are obtained
for arbitrary positive 6, will immediately suggest to the reader familiar with
Neyman’s theory of confidence intervals that it may be easy on the basis of
those results to draw conclusions about the existence of Neyman’s various cate-
gories of confidence intervals. It is. In particular we find that the set of
confidence intervals arrived at in §5 constitutes Neyman’s short unbiased set.

The writer is aware that not all the results of this paper are new, and hopes
he has given credit where it is due, but believes it desirable to bring together all
the results, old and new, in this attempt to clean up the problems (¢) and (7).
He is pleased to acknowledge his debt to Mr. David Votaw for aiding in the
calculations for fig. 1 and for finding the formulas (6).

Part I. SigNIFICANCE TESTS AND CONFIDENCE INTERVALS BASED ON THE
F-DISTRIBUTION

2. The F-distribution. The sample E;: (Ta, Ta, -+, Tinvi), © = 1, 2, is
assumed to be from a normal population 7; with mean a; and variance o; . We
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write § = o1/07 , and might regard the statistic T as an estimate® of 6, where
T = sf/sﬁ and

N Ny
i = zl(xif—f?i)z/n;, Z; = z:lxii/Nc', n=N;— L
1= 1=
It will be convenient to consider 6, o , a; , @2 as the population parameters, a
being eliminated from the joint p.d.f. (probability density function) of E;
and E; by the substitution ¢ = 6. For any given positive number 6, we
define the composite hypothesis

Hy: 0=06,, 0<o;<+o, —w << +w, —wo <a<+o.

In Hotelling’s apt terminology the last three parameters are nuisance parameters.

It is well known that U, and U., where U; = n;si/o?, are independently
distributed according to x’-laws with n; and 7, degrees of freedom respectively,
and that hence the quotient F = (Uy/n;) + (Us/n2) = T/ has the F-distribu-
tion An,n, (F) dF with n; and n, degrees of freedom, where

(nl /m)inx - ( m )—i(nxﬂz)
hu n. = ! 1 -—_ ’ 0 é é .
) = B, g\ us =
For later reference we note that if we define the variable z from
n T

(1) F 771 1 - z ’
then the cumulative distribution funection of z is the incomplete Beta function®
I z(%nl y %”4)'

Let « be any number such that 0 < a < 1 (« will be the significance level
for (¢); 1 — a, the confidence coefficient for (¢7)). The symbols Aan, , Ban,
will always denote a pair of numbers for which?

Bﬂ n,
@) [ b du = 1 = a.
Anyny
Every choice of the pair 4, B leads to a solution of problems (?) and (:7):
(2). A test of H, at significance level a consists of rejecting Ho if T < Ap n,00 or
T > Bojnybo -
The probability of rejecting H, if it is true is

1—PT(A005T§300|00)=1—P1'(A <T/00<B|00)=a,

independently of the true values of the nuisance parameters.

! Biased.
2 All the results of this paper pertaining to the F-distribution could of course be stated

in terms of Fisher’s z-distribution [2] or the incomplete Beta distribution; the first is used
here because of its popularity in applied statistics, and because it permits the simplest

statements for solutions of problems (¢) and (s%).
3 Superscripts on 4, B will signify that a further condition has been laid on the pair

A, B. The subscripts will be dropped when there is no danger of confusion. We permit
B = = as a possible choice.
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(¢%). A set of confidence intervals for § with confidence coefficient 1 — o is*
T/Bn1n2 é 0 é 1’/14”!”2 .

The probability that the true value of 8 will be covered by the above random
interval is

Pr(T/B<0<T/A|8) =Pr(A<T/6<B|6=1—aq,

whatever be the true values of @ and the nuisance parameters.

It will be convenient to adopt a brief notation for the tests and confidence
intervals determined by certain choices of the limits A, B. In the sequel we
shall denote these choices by Aim , Bins where ¢ = I, II, ---, VI. We
shall call the significance test based on the pair A°, B' the test ¢, and the set of
confidence intervals based on this pair, the set 7 of confidence infervals, or some-
times more briefly, the confidence intervals 7.

3. Use of one tail. Suppose a situation in which we do not mind accepting
H, if the true value of 8 exceeds 6, , but we desire a test which is as sensitive as
possible in rejecting Ho when 8 < 6,. It can be shown (for n. > 2) that the
expected value of T is &(T) = ns0/(n. — 2), and hence when the true value of 6
is small compared with 6, , so is &(T). By the usualintuitive considerations we
are led to rejecting Hy if F = T'/6, falls in the left tail of the F-distribution. To
make the significance level equal to o we take the limits A, B so that

I

A
"2 du = I _
A hnlng(u) U = a, Bnlnz = 0,

Similarly, to test Hy against alternatives § > 6, we define test II by

A =0, hagn,(u) du = a.

11
""e
Why test I is best for testing H, against alternatives § < 6,, and test II for
6 > 6y, will be explained more convincingly in §9.

The confidence intervals I and II are then semi-infinite. It is apparent that
if we are not loath to accept large values of 6 but wish to exclude the largest
possible interval of small values (0, T/B), we should use the set II. Indeed,
the set II is optimum in the case where we are willing to accept values of 8 larger
than the true value but desire the highest possible probability of excluding any
values less than the true value; however, the precise formulation and proof
of this statement must be postponed to part II. Analogous remarks apply to
the set I and a willingness to accept values of 8 less than the true value.

For & = .05 or .01 the values of BY, ., are given in Snedecor’s F-tables [12;

+If B = » we omit the equality sign to the left of 6, if A = 0, the equality sign to the
right of 6.
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same 7, , ng as ours], and the values of 4%,., may be calculated from the same
tables by using the relation

3) Azuﬂz = I/Blnlzﬂl .

A%, n, for a = .50, .25, .10, .025, .005 may be obtained by use of the transforma-
tion (1) and Thompson’s new tables [13] of percentage points for the incomplete
Beta distribution. BY. ., for these values of a can then be found from (3).

4. Symmetry condition. We now restrict our attention (until §9) to the
“two-sided” situation in which we are interested in all alternatives to 8 = 6,
on therange 0 < § < ». Let us contemplate the following symmetry condition:

“4) Anxnz = I/Bﬂzﬂl

for all positive integers n;, nz. The desirability of this condition and that of
§5 follows not from mathematical principles but from practical considerations
which might be relevant whenever significance tests or confidence intervals are
considered for a parameter 6 which is the quotient of two other positive param-
eters 6; and 6, , and the estimate of 8 is the quotient of the estimates of 6, and 6, .

Suppose that given the samples E: and E,, computer & labels them 1, 2,
the same way we have, and using our test of §2, rejects the hypothesis that
o3/os = k unless

2.2
Anl'nzk é 81/82 = Bhlnzk;

while computer G labels them 2, 1, and following a similar rule rejects o3/03 = 1/k
(in our notation) unless

Appn/k < $3/81 £ Buyn /k.

It will be seen that (4) is merely the condition that they reach the same con-
clusion. This makes life simpler, at least for computers and consulting statisti-
cians. Likewise, if @ and & use the confidence intervals of §2, then they will
make numerically equivalent statements about ¢3/03 and ¢3/07 if (4) is satisfied.

6. Logarithmically shortest confidence intervals. The length of the confi-
dence intervals of §2is L = T(A™ — B™'). We might consider choosing 4, B
in such a way that &(L) is minimum. This leads to the problem of minimizing
A™' — B7'subject to (2). It might seem just as desirable, however, to minimize
the expected length of the confidence interval for 6

(T/B)} £ afo: = (T/A)M

This leads to a different problem with a different solution.

The condition on confidence intervals for # which appears intuitively desirable
to the writer, is that the limits 6, 8 of the confidence interval §(E;, E,) < 6 <
0(E, , E,) be such that &(log & — log ) is minimum. For the confidence inter-
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vals of §2 this is equivalent to minimizing B/A, and by using the method of
Lagrange’s multipliers we easily find that

(5) [uhnl n,(u)]zi-A =0

and (2) must be satisfied. Denote the solution® by A_I,.Il‘,,2 , B, . Ttisevident
that the same condition (5) is obtained if we ask for logarithmically shortest
confidence intervals (based on the F-distribution) for §* where & > 0.

The numerical values of the limits A™, B™ are difficult to calculate if n; = n. .
The best procedure seems to be to transform to the incomplete Beta distribution
by means of (1) and to calculate the corresponding points ar.,, , br.s, from the

equations
(6) [Iz('%nl , %nz)]:-a = [Iz(%nl + lf %nﬁ)]z =1-a.

The points a, b can be found to two decimals by inspection of Pearson’s tables
[9]. Unfortunately, in the many cases where a is close to 0, or b to 1, A1, B!
are then subject to enormous error when ealculated from (1).

6. Reciprocal limits. While the problems () and (¢¢) are closely related, the
last choice of limits was suggested solely by our consideration of (¢7). Later
we will reconsider this choice from the standpoint of (¢),—the reader may
anticipate that it will again be found advantageous in some respect. For the
present, we proceed to three further choices, these arising from various ap-
proaches to (z).

The procedure recommended in several statistics manuals (see §8) for testing
the hypothesis § = 1 is to refer the quotient of the larger of s , s3 by the smaller
to tables. This suggests the introduction of a statistic M defined as the maxi-
mum of T, T~'. Its distribution® under the hypothesis § = 1 is easily found:
Let gnyn, (M) be its pdf. Thenforl = u < o,

gnng(u)du = Priu < M <u+du|b=1)
=Pru<T<u+duoru < T <u-+du)
=Priu<T <u+du)+ Priu < T < u + du),

since the last two terms are the probabilities of mutually exclusive events.
Furthermore, the first term is k., »,(4) du, and because of the symmetry induced
by 6, = 1 we can evaluate the second term by merely interchanging subscripts.
Hence the desired distribution is

gnlnz(u) = hnlnz(u) + hngnl(u),

regardless of the true values of the nuisance parameters.

5 It can be shown by elementary methods that the solution of these equations exists and
is unique; likewise for the solutions later denoted by superscripts IV and V.
¢ Considered by K. Pearson [8].
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If we reject the hypothesis § = 1if M > M,,,,., where

f gnlnz(u) du = a,
Mﬂ]"z
then this significance test is easily shown to be the same as that of §2 with
6y =1 and

~—1
Anlng = Bnlng .

We remark that again these limits are not easy to compute if n; = 7.
While this choice of 4, B, which we shall call A%, , Bh\., , has been motivated
only for the case 6, = 1, it leads of course to a test IV for any 6, and a set IV
of confidence intervals.

7. The likelihood ratio. Since the properties of A-criteria in general have
received much attention in the literature, and since in particular the A-test for
H, is equivalent to a certain choice of 4, B, we shall mention it here, and see
whether it has any advantages in §9. X\ for H, in the case §, = 1 was given by
Pearson and Neyman [7; their Hy , n; , st , 9, Ay, areour Hy, N;, sS(N: — 1)/N;,
Ni(N; — 1)/{N(N, — 1)T}, A]; for any 6, it may be shown to be

-1
A= Cpyny F* (1 + %F) Ry ny(F).

On considering the (bell-shaped) graph of A against F we see that A < A, cor-
responds to two intervals, say 0 = F < F' and F'/ < F £ . The \test,
which consists of rejecting Hy when A < A, where A, is determined so that the

significance level is «, is thus equivalent to test V with A, ., , BY,., satisfying

(2) and
3/2 n - .
w1+ —u) Aan,(w) = 0.
N2 u=A

8. Equal tails. Perhaps the most venerable procedure for determining limits
on a distribution for a significance test in a “two-sided” case is to choose them
so that the tails of the distribution have equal areas. Define A}, , Bu1n, from

VI

Anl no g
£ hnlnz(u) du = ‘/-:{!ﬂ2 hnlng (u) du = %a.
1
The values of BY!,, for « = .10 and .02 are given in the F-tables [12; same
n, ,ng as ours] as 5% and 1% points. The relation

@) AlL,Bla, =1

is easy to get, and hence AY!,, for these values of a may also be calculated from

the F-tables. The limits for o' = .25, .10, .025, .005 can be calculated from
(1), (7), and Thompson’s tables [13].



378 HENRY SCHEFFE

Since test VI will later be seen to have some merit we will discuss it somewhat
further at this point: In several statistics texts [e.g., 3, 14] the student is told
to take the quotient of the larger by the smaller of s , s3 , refer it to the F-table,
taking the 7; of the table to be the n; of the numerator, and to reject the null
hypothesis § = 1 if the sample value is larger than the tabulated. It is then
further stated without proof that in using the 5%, or 19, points of the F-table,
the significance level is actually 109, or 29%,. Since the quotient thus referred
to the table is precisely the statistic M of §6, it would seem logical to refer it
to an M-table rather than the F-table! However, the above procedure can be
justified” as follows: The equation (7) tells us that test VI fulfills the symmetry
condition (4). It makes no difference then in his conclusions whether the
computer uses the statistic si/s3 and the distribution h, .,(F) or s3/si and
huyn, (F). In particular he may always use the larger ratio and An..(F), where
m and n are the ‘“‘degrees of freedom’ of numerator and denominator, respec-
tively. Since this statistic cannot fall in the lower tail, he need consider only
whether the calculated value exceeds the tabulated. But in using the value
tabulated as the upper p%, point of the F-distribution, he makes his test at the 2p%,
stgnificance level.

9. Comparison of the tests and confidence intervals. We now have at hand
two one-tailed and four two-tailed tests, and corresponding sets of confidence
intervals, all based on the F-distribution. We note at this point that all four
of the two-tailed tests satisfy the symmetry condition (4), and that in the special
case m; = nq, these four tests become identical. In comparing any two tests,
an instrument which makes their relative advantages completely anschaulich
is the power curve (surface in a more complicated case). The definition and
interpretation of the power curve of a test are based on the insight of Neyman
and Pearson [5] that two types of error are possible in applying a test: We
may (I) reject the hypothesis when it is true, or (II) accept it when it is false.

We see immediately that for any test of the class considered in §2, the prob-
ability of a type I error is the same, namely «. To find the probability of a
type II error, let us introduce a little more terminology: We denote by E the
sample point (E;, E.) and by w the region of sample space defined by

(8) T < A6y and T > Bb,.

w is called the critical region of the test: the test rejects H, if and only if E falls
in w. The probability of this, which is called the power of the test, is

1 — Pr(A6,/6 < T/6 < B6/0]86, o5, a1, as).
Since in the present case this happens to be completely independent of the true

values of the nuisance parameters, even for 8 = 6, , let us write it as P(w | 6).
Then

7 The writer is indebted to Mr. T. W. Anderson, Jr. for pointing out to him that it is not
necessary to use the M-distribution.
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BOgy/0

(9) Pw|6) =1~ L | houng ()

Finally, by the power curve of the test we mean simply the graph of the power
P(w | 6) as a function of 6.

We may now state the probability of a type IT error:itis 1 — P(w | 8), where
necessarily 6  6,. Hence the ordinate on the power curve for 6 = 6, is the
probapbility of avoiding a type II error, while for 8 = 6, it is the probability of
making a type I error. By inspection of equation (9) we find that, barring the
cases B = o or A = 0 (tests I and II), P(w|8) — 1 as § = 0or ». Wecal-
culate the derivative to be

(10) P/(w) 8) = [Uhayny(u)/610l400s0 5
Plwle)
1.0
>N J—L
s ﬁx o Power Curves /b/
N or y

\ \ tests I, LMLV 7
8 3 /
, \\\‘ \ Ny~10, 17, ~20, X=~.05 /1 / i

\\ \\ / ,’l
© WA /‘ //
5 ‘\‘ \\‘ ll / U
\“ \ '/ ’/
a \‘ \, ,,/ ’l
. VN, el 11~ /a1l
\\ , ’,
.z N \\ V4 Y
N / ','
a \'\b e‘/‘;a—/
el
o-l i P ] EJ e 7 B 91 2 3 4 5 6 7 8 910 %
Fic. 1

which is obviously continuous for 0 < 6 < «. If we equate this to zero we find
a unique solution for 6, and hence the power curve has a single minimum point.
In the exceptional case B = « we see from (9) that P(w | ) decreases mono-
tonically from 1 to 0 as 8 increases from 0 to «; in the case A = 0, P(w [ 6)
increases monotonically from 0 to 1. Some power curves® are plotted in fig. 1.

Always understanding by w a region of the set defined by (8), and recalling
the above interpretation of the ordinate on the power curve, we are led to ask
whether there is not a w, say w, , whose power curve nowhere drops below any
other curve P = P(w|6). (They all pass through (6, «).) The test based
on such a region w, would be called uniformly most powerful (UMP) of the class
considered, and obviously would be preferred under any circumstances. Alas,

8 Power curves for test V may be found in a paper by Brown {1]. It did not seem worth-
while to construct curves for test IV, since the limits are hard to compute, the test is biased,
and has little historical interest.
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it does not exist. Perhaps some insight into the fact of the general non-existence
of UMP tests can be gained by returning to fig. 1. While fig. 1 is for the case
ny = 10, ns = 20, and a = .05, the following remarks are valid for any n, , 72 , a:
We note that for testing H, against alternatives § < 6, test I is far superior to the
other three, indeed it is superior to any of the tests of the class defined by (8)
in the sense that its power curve lies above that of any of the other tests.” But
for alternatives 8 > 6, , test I is seen to be very poor (the worst possible, it can
be shown). Similar remarks apply to test II and the complementary alterna-
tives. This constitutes the more convincing explanation promised in §2 of the
superiority of tests I and II in the “one-sided’’ cases. Since the power curve
of test I lies above all other power curves for § < 6, , and that of test IT above
all for 8 > 6, , it is now clear that there is no UMP test of the class considered.

To cope with the commonly occurring situation where there is no UMP test,
Neyman and Pearson [5] defined an unbiased ‘est,—one whose power curve has
an absolute minimum at 6. The desirability of an unbiased test in the “two-
sided” case is evident when we note that if a test is biased, the probability that
we accept the hypothesis 6 = 6, is greater if 8 has certain values 8 = 6, than if
6 = 6,. To find which, if any, of our tests is unbiased, we equate expression
(10) to zero for = 6, . As a result we find'® the condition (5) which determines
test III.

We see now that the limits A™, B™ yield the preferred test in the “two-sided”’
case, as well as the logarithmically shortest confidence intervals. However, as
pointed out in §5, the numerical values of these limits are difficult to calculate,
and the question then arises, do we lose much by using instead the easily ob-
tained “equal tails”’ limits AVY, BV'? In the case n, = 10, n, = 20, « = .05,
fig. 1 shows that the power curves of tests III and VI differ very little. The
extent of the bias of test VI for other values of n; , n2, and & = .05, .01 is in-
dicated in table I. (The missing diagonal entries are all 1,5 or 1,1). Let
us call the entries 8, 100 & where 8 = Onin/0, & = P(W"" | Omin). From (10)
and (1) we get the following formula for computing 8:

B = (B — AQ""*)/(Q — 1),
where
Q=$/G’ a=a/(1—a)’ $=b/(l~b),

and @ and 1 — b are the 100(3a)9%, points on the incomplete Beta distribution
for »» = my, » = m2, and » = M, v2 = N, respectively, in the notation of
Thompson’s tables [13]. & may then be computed by transforming (9),

(1+8/9)"
a=1 —[I,(%nx, %nz)] )
x=(1+8/®

9 The reader may prove this from (9) or note that it is a special case of the
results of §10.

10 The equivalent condition on the incomplete Beta distribution was given by Pitman
[10] for the case 6, = 1.




TABLE I
Minimum poinis of power curves of test VI
The entries are Omin/60 , 100 P(0"* | Omin),
Roman type for « = .05, bold face for « = .01

\\n2
s 1 2 3 5 10 20 40 w©
~
634, | 576, | .550, | .565, | .574, | .581, | .58,
475 | 447 | 417 |38 |37 |36 | 3.61
1
.e31, | .677, | .67, | .696, | .e17, | .630, | .645,
.946 .883 .808 740 .706 .887 .870
1.578, 861, | 779, | .45, | 737, | 7135, | .73,
4.5 493 | 469 | 444 | 426 | 415 | 4.05
2
1.585, .886, | .716, | .749, | .7149, | .758, | .7e0,
.948 .982 .928 .853 .804 .18 .761
1.735, | 1.161, 805, | .838, | .819, | .812, | .808,
447 | 4.93 492 | 470 |45 |44 | 420
3
1.7%, | 1.170, .889, | .8s5, | .s21, | .19, | .8920,
.883 .982 .978 .017 .867 .887 .804
1.789, | 1.284, | 1.117, 927, | .898, | .886, 877,
417 | 469 | 4.92 492 | 478 | 4.67 | 4.54
5
1.762, | 1.289, | 1.134, .924, | .s96, | .887, | .883,
.808 .928 978 .975 934 .903 .864
1771, | 1.342, | 1.194, | 1.079, 965, | 049, | .41,
3.8 | 444 | 470 | 4.92 496 | 480 | 476
10 -
1.682, | 1.335, | 1.198, | 1.083, .964, | .949, | .997,
.740 .863 .917 .95 .987 .964 .926
1.742, | 1.357, | 1.221, | 1.114, | 1.036, 983, | .967,
375 | 426 | 451 | 478 | 4.9 498 | 4.88
20
1.622, | 1.385, | 1.217, | 1.118, | 1.038, .983, | .968,
.706 .804 .867 .934 .987 .993 .960
1.722, | 1.360, | 1.231, | 1.129, | 1.053, | 1.017, 984,
368 | 4.15 | 4.41 | 467 | 489 | 4.98 4.94
40
1.587, | 1.3a7, | 1.221, | 1.127, | 1.064, | 1.018, .984,
.887 .18 .887 .903 .964 .993 .980
1.700, | 1.360, | 1.238, | 1.140, | 1.063, | 1.034, | 1.017,
361 | 405 | 4.20 | 454 | 476 | 488 | 4.4
o0
1.549, | 1.315, | 1.219, | 1.134, | 1.067, | 1.034, | 1.017,
.670 .761 .804 .864 .928 .960 .980
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and using Pearson’s tables [9], or, when = is very close to 0 or 1, using a few
terms of the series

o
1y 1p) = 1 — niy)=__2% |2 __"T<& 9
I(3m, 3n) = 1 — Iis(3n, im) B(im, in) [m N(m + 2) 1!

(n—2)n—4)8 (m—2)(n—4)(n—-6) 38 " ]
2i(m + 4) 2! 22(m + 6) 3! )

In computing 8, @ it is perhaps simplest to take n; > n, and use the relationships

+

Ignlnz = l/ﬂn,nn &n;ng = Qngn,; -

When sample sizes n; + 1, n2 + 1 are such that table I indicates a large bias’
it might be worthwhile to get limits for an unbiased test from the “‘equal tails’,
limits as follows: The limits A™, B™ for an unbiased test III may be obtained
by taking

A — AVI/B, B — BVI/B,

but the test will then be at significance level & The gain in using A™, B™ instead
of AV, BY! is more apparent when we consider confidence intervals: The sets
associated with A™, B™ and AVY, B! have the same logarithmic lengths, but
the confidence coefficients are 1 — @ and 1 — «, respectively.

This seems to be about as far as it is worthwhile to carry the developments
at the elementary level of part I. Some inadequacies may already have disturbed
the reader: Why not consider in place of the interval (4, B) on the range of F
any measurable region' R such that the integral of k,, .,(F) over Ris 1 — a?
Under the transformation 7 = 6,F the complement of R, just as the complement
of (A4, B), would lead to critical regions w for which P(w | 6,)) = a for all values
of the nuisance parameters. Critical regions satisfying the last condition are
said to be similar to the sample space with regard to the nuisance parameters.
More generally, how would our preferred test I, IT, III stand up if we admit
for comparison, tests based on any similar regions whatever? Finally, how
can one formulate in a general way conditions for optimum confidence intervals,
and would a more general formulation still lead to the preference of the sets
I, IT, ITI? Answers to these questions will be found in part II.

ParT II. S16NIFICANCE TESTS AND CONFIDENCE INTERVALS BASED ON ANY
SimMiLAR REGIONS

10. Common best critical regions. For the case 6, = 1, Neyman and Pearson
[6] have shown that the critical region of test I is the common best critical
(CBC) region for testing H, against alternatives 8 < 6. This result is easily
extended to any 6, by a simple device. We consider the following 1:1 trans-
formations of variables and parameters:

11 Qur intuitions may balk at the notion of using sets B more general than intervals, but
it would nevertheless be reassuring to find that our tests can meet this competition.



RATIO OF VARIANCES 383

(11) xli=03x{i7 x2k=x;k: j=1)2,"')N1;k=1)2)'°')N2)
(12) 0 =60, o3=(02), @ =0ai, @ =as.

Denote by E;, E;, E’ the points corresponding to E;, E., E, respectively,
under the transformation (11), by ¢ any point in the space-of the three nuisance
parameters, and by ¢ its correspondent under the transformation (12), by
H the transformed hypothesis, Ho: ¢ = 1; ¢, unspecified. If w is any Borel-
measurable region of the space of E, and w’ the map of w under (11), then
Pr(Eew|8,¢) = Pr(E' ew' | ¢,4'), which we shall write as

(13) Pw|g, ¢9) = Pw ¢, ¢).

We note that the coordinates of E; are normally distributed with mean a;
and variance (o:)° where (o1)) = 6(0s), all Ny 4+ N; coordinates being
statistically independent. Designating the critical region of test I by wy,
and its map under (11) by wy , the result of Neyman and Pearson may then be
stated as follows: wo is a CBC region for Hy and alternatives 8/ < 1. Now
suppose wo were not a CBC region for H, and alternatives 8 < 6,. Then there
would exist a region w; , a value 8; < 6, , and a point ¢, such that P(w; | 6; , ¢) >
P(wo | 61, 91), while P(wy | 6,, ) = a for all 8. Let wy, 6; , 81 correspond to
w, 6, % under (11) and (12). Then from (13) we would have that
P(wi | 61, 81) > P(w | 61, 91), where 6; < 1, while P(w; | 1, &) = a for all &.
But this would contradict the fact that we is a CBC region for Hy and alternatives
6 < 1.

The proof that the critical region of test II is a CBC region for testing H,
against alternatives § > 6, is of course completely analogous. This establishes
the non-existence of a UMP test for Hy, and so we consider next the existence
of a “best” unbiased test.

11. Type B; region. This section is a direct application of a recent paper
“On the theory of testing composite hypotheses with one constraint’ to which we
shall refer as [11]. Since it is not feasible to restate here the definitions, assump-
tions, and theorems of [11], we shall refer to them by their numbers there. It is
convenient to transform the parameters of the p.d.f. of £ by putting

(14) 06 =1/, 6 =1/, o3 = 1/h
Then
(15) p(E|¥, b, a1, a) = 2m) VMY
exp {—WhIN:(E — @)’ + Si] + hINe(Z: — @)’ + Si]},

where
N=N1+Nz, S.-=n.~s?.

We note that type B and type B regions (definitions 1, 2 in [11]) are invariant
under certain transformations of parameters: Suppose new parameters §’, ¢’
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are introduced by 1:1 transformations § = 6(8’), ¢ = &(%'). Let 8o correspond
to 6o, and consider the transformed hypothesis Hy : ' = 6, ; &, unspeclﬁed
Sufficient condltlons that a region be of type B for testing H, if it is of type B
for testing Hy are that the functlon 6(6’) have first and second derivatives and
that the first not vanish at 6, . The last statement remains true if B is replaced
by B;. Since the transformations (14) satisfy these sufficient conditions, we
define
Hy v = ; ¢ = (h, a1, @), unspecified,

and propose to show that there exists a type B, region for testing Hy , and that

it is the critical region of test III.
For later reference we now note that the four functions of variables and

parameters defined in Table II are mutually independently distributed as
indicated there.

TABLE 11
Function Distribution
Uy = ¢S, = Sl/ 91 x2, with n; degrees of freedom
Uz = hS; = Sz/a', “ ¢ ne “« “ ¢«
= (WhN)}E — a1) = N} 1(#1 — a1) /o1 | normal, with zero mean and unit variance
= (hN2)¥(Z: — a5) = N*(:;):2 — az) /o3 “« @« o« PEETERT «

Let‘us first verify the critical assumption 3° of [11]: Identifying our ¢, &, a; , a2
with 61, 62, 63, 64 of [11], we find from (15) that
&1 = HN/Y — h[Ni(E — @)’ + Si},
¢2 = HN/h — Y[Ni1(Z — @)’ + Si] — [No(Z2 — a2)® + S},
és = YhN1(Z — av),
¢4 = hN2(Z; — a),
and then check 3° by differentiating equations (16).
To verify assumption 4°, let 21, 22, 25, 24 of [11] be our zu, T12, T2 , T2z,
respectively. We calculate
8(¢1,¢2,¢3,¢4)_ 3 _ _
am = Yh'(z: T2) (24 -’133);
which vanishes only on the same set of probability zero for all admissible values
of the parameters. The validity of assumption 5° follows from §5 of [11], and

there is no difficulty in verifying 1° and 2°.
To apply theorem 1 of [11] we must find functions ki(¢2, @3, ¢4 ; ¥o, &),

7 = 1, 2, such that
kg +o0

an [ 6lp(6n, b, 05, 40l ¥0, ) dt = (1 = @) [ same,
1 a0

(16)
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for ¢t = 0, 1, where the symbols ¢; henceforth are understood to stand for the func-
tions (16) with ¥ replaced by yo . If the functions k; exist, then the region in
sample space defined by

(18) ¢ < ki and ¢1 > k,

is independent of ¢’ and of type B.
From equations (16) and Table II we see that

61 =3(N1— w)/bo, 2= 3N — w)/h,

(19) E) )
¢3 = (YohN1)'us, &1 = (AN2)'uq,

where
w = U+ u3, u = U+ Us + u3 + i,
and ¢ is put equal to o in U, us. Furthermore, for fixed s , us , % , the range
of u is
S w S w — ui .

Transforming the integrals in (17) by substituting (19) and

p(Uly Uz,us,u4|‘ll/o,t”)
a(d’ly o2, Ps, ¢4)'£(uly U2, u3’u4) ’
O(u1, uz, us, us) (U, Us, us, us)

p(d1, b2, b3, &4 | Y0, ¢) =

where the p.d.f. in the numerator is, from Table II,
CUMTUS™ exp (—3us),

we get as the equivalent of (17)

Ko 1

f (N1 — u)(uz — ud)" uy — uf — w)™ ' du; = (1 — a) _/; same

K

with
Ki(us, us, us 590, 9") = kilde, b3, ¢4 ; %0, ¢').

Finally, we let
(20) z = (u — us)/(us — us — ui),
and get

K2 * 1
f N1 — uz — (us — u} — D)2 (1 — 2)de = (1 — a) .[; same,
(31

where «;(uz , us, us ; Yo, #’) are the values of = obtained by setting u; equal to
the function K; in (20). The last condition is equivalent to

K2 1
(21) f g — )l gy = (1 — @) f same, t=0,1.
3 0

1



386 HENRY SCHEFFE

Since z is a continuous monotonic function of ¢; , (18) becomes
(22) z<x and > k.

Solutions for the functions «; , k. satisfying (21) exist in the form x; = constant.
Indeed, if we now note that the z defined by (20) is the same as that defined in
(1), and let x; = @, x» = b, we see that the conditions (21) are identical with
(6), and that our method of finding type B regions has led us to the critical
region of test IT1.

To show that the type B region obtained from Theorem 1 of [11] is also of
type Bi, we appeal to Theorem 2: From (15) we have

p(E | ¥, 8)/p(E | ¥, ) = @/¥o)™ exp {(4 — $0) (61 — $N1/¥0)}.

Since for ¥ 5 ¥ this function is convex in ¢; , Theorem 2 is applicable. The
result of this section is the conclusion that the critical region of test III is of

type B, for testing Hj .

12. Neyman’s categories of confidence intervals. The concepts and ter-
minology of this section are those formulated in a basic paper [4] by Neyman.
Suppose a distribution depends on a parameter 6, and on further parameters
65, 03, -+, 8; which we shall symbolize by #. The hypothesis

H(6,): 0= 6; ¢, unspecified,

may be called a composite hypothesis with one constraint [11]. Let E be the
sample point, W be the sample space, and w be any Borel-measurable region in .
Write Pr{E ew | 0, 8} = P{w| 6, 8}. The condition that a critical region w(6,)
for testing H () be similar to W with respect to ¢ is

(23) P{w(6o) | 60, 3} = a for all &,

where a is fixed throughout our discussion. Suppose for every admissible 6,
there exists a similar region w(6). The complementary region A(8) =
W — w(8,) we may call a region of acceptance. For any E we next define the
linear set 8(E) of points on the 6-axis as the totality of points 6 such that £ ¢ A(9).
The probability [4] that the random set 8(E) cover a value 6" if the true value
of 1is ' is

(24) Pr{o” es(E) |6, 9} = 1 — P{w(0”) |0, 8},
and hence from (23),
(25) Pri¢’ es(E)| 0,9} =1 — «

for all ¢, 8, and we might call the aggregate {6(E)} a set of confidence regions
with confidence coefficient 1 — a. Now if all 3(E) are intervals, then they form
a set of confidence intervals.

We have now shown that if H(6,) is a composite hypothesis with one con-
straint, if for every admissible 6, there exists a similar region w(6) for testing
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H(6,), and if the aggregate {6(£)} determined by the family {w(6,)} consists of
intervals §(E), then {§(E)} is a set of confidence intervals. By similar use of
(24) the reader may prove that if furthermore each w(6,) of the family has the
property P of the table below, then the corresponding set {8(E)} of confidence
intervals is of Neyman’s category C':

P: property of w(6y) C: category of {6(E)}
gives UMP test shortest
CBC for 6 > 6, (or 6 < 6) best one-sided
gives unbiased test unbiased
of type B short unbiased
of type B; shortest unbiased

We have taken the liberty of calling a set of one-sided confidence intervals

3(B):  O(E) < 6 (or 6 < 8(E)),

where §(E) and 8(E) are Neyman’s unique lower and upper estimates, respec-
tively, best one-sided, and of calling a set {8,(E)} shortest unbiased if for all ¢’, &
it satisfies (25) and

(26) [0Pr{6" € 5o(E) | 6, 8}/36lp—g = O,
while for any other set {6:(E)} satisfying (25) and (26), and all 6"/, ¢’, &,
Pr{6” e&(E) | 6, 8} < Prie” e&(E) | ¢, 9.

It follows immediately from this discussion that our sets II and I of con-
fidence intervals are the best one-sided, and that the set III is not only a short,
but the shortest, unbiased set.

In conclusion, we remark that Neyman’s concept of the “shortness’” of a set
of confidence intervals strikes one at first as indirect,—to fully appreciate its
elegance it is perhaps necessary to attempt the formulation of a general theory
from a more naive approach,—and that it is then of interest to discover that
in the present case his short unbiased set coincides with that reached by the
direct intuitive (but obviously extremely limited) method of §5.

REFERENCES

(1] G. W. BrRowN, “‘On the power of the L, test for equality of several variances,” Annals
of Math. Stat., Vol. 10 (1939), p. 127.

[2] R. A. FisHER, “On a distribution yielding the error function of several well known
statistics,” Proc. Int. Math. Congress, Toronto, 1924, Vol. 2, p. 808.

8] J. F. KENNEY, Mathematics of Statistics, part 2, N. Y., 1939, p. 144.

[4] J. NEYMAN, “Outline of a theory of statistical estimation based on the classical theory
of probability,”” Phil. Trans. Roy. Soc. London, ser. A, Vol. 236 (1937),
pp. 333-380.

[5] J. Neyman and E. S. Pearson, “Contributions to the theory of testing statistical
hypotheses, part I,”” Stat. Res. Mem., Vol. 1 (1936), pp. 1-37.



388 HENRY SCHEFFE

[6] J. NEYMAN and E. S. PEARSON, “On the problem of the most efficient tests of statistical
hypotheses,”” Phil. Trans. Roy. Soc. London, ser. A, Vol. 231 (1933), pp. 289-337.
[7] E. S. PEarsoN and J. NEYMAN, ‘“‘On the problem of two samples,” Bull. Int. Acad.
Polon. Sc. Let., ser. A, 1930, p. 82.
[8] K. PEARSON, S. A. STOUFFER, and F. N. Davip, “Further applications in statistics of
the T, (z) Bessel function,’”’ Biometrika, Vol. 24 (1932), pp. 306, 339, 340.
[9] K. PEarsoN (Editor), T'ables of the Incomplete Beta Function, Cambridge, 1934.
[10] E. J. G. PrrmaN, “Tests of hypotheses concerning location and scale parameters,
Biometrika, Vol. 31 (1939), p. 207.
[11] H. ScHEFFE, “On the theory of testing composite hypothéses with one constraint,’
Annals of Math. Stat., Vol. 13 (1942), pp. 280-293.
[12] G. W. SNEDECOR, Statistical Methods, Ames, 1940, pp. 184-187.
[13] C. M. TuompsoN, ‘‘Tables of percentage points of the incomplete Beta function,’
Biometrika, Vol. 32 (1941), pp. 168-181.
+14] L. H. C. TippETT, The Methods of Statistics, London, 1937, p. 118.

”



