ON A GENERAL CLASS OF “CONTAGIOUS” DISTRIBUTIONS
By W. FELLER

Brown University

1. Introduction. In a paper of considerable interest, J. Neyman [11] recently
discussed frequently occurring situations where the usual tests of significance
fail. He discussed, in particular, experiences in entomology and bacteriology
which cannot be described by the usual distribution functions and he constructed
several new types of apparently contagious distributions. Now at first glance
Neyman’s investigation may seem of a rather specialized nature, and his distri-
butions of a restricted applicability. It may therefore be useful to point out
that they are intimately related to results obtained by various authors in con-
nection with topics having so little apparent relation as accident statistics, tele-
phone traffic, fire damage, sickness- and life-insurance, risk theory, and even an
engineering problem. Viewed in the proper light of a general theory, Neyman’s
method is particularly closely related to some too little known considerations by
Greenwood and Yule [6]. These authors were the first to find, and apply, the
distribution which shortly afterwards was independently rediscovered by Eggen-
berger and Polya' [3, 4].

Greenwood and Yule discussed two types of what may conveniently be called
contagion: with one type there is true contagion in the sense of Polya and Eggen-
berger, where each “favorable” event increases (or decreases) the probability
of future favorable events; with the second type the events are, strictly speak-
ing, independent and an apparent contagion is actually due to an inhomogeneity
of the population. The two explanations are very different in nature as well as
in practical implications. It is therefore most remarkable that Greenwood and
Yule found their distribution assuming an apparent contagion; in their opinion
this distribution contradicts true contagion. Qn the contrary, Polya and Eggen-
berger arrived at the same distribution assuming true contagion, while the possi-
bility of an apparent contagion due to inhomogeneity seems not to have been
noticed by them. The Greenwood-Yule-Polya-Eggenberger distribution has
found many applications.”? Therefore the possibility of its interpretation in two
ways, diametrically opposite in their nature as well as in their implications is of
greatest statistical significance. This fact is, incidentally, a justification for
general theories in statistics. ‘

We shall see that Neyman’s contagious distributions belong to the second
type and are related to the Polya-Eggenberger distribution only if the latter is

1 The fact that the Polya-Eggenberger distribution is identical with the Greenwood-Yule
distribution seems to be mentioned in the literature only in a Stockholm thesis by O. Lund-
berg [9].

2 Of quite recent applications we mention Kitagawa and Huruya [8], Rosenblatt [15],
O. Lundberg [9]. Only the latter seems aware of the double nature of the distribution.
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390 W. FELLER

interpreted in the sense of Greenwood and Yule. In Neyman’s case as well as
in the other cases referred to above we are concerned with inhomogeneous popu-
lations and there exists an extremely simple device to describe such situations
appropriately. Once stated, this device will appear trivial. Nevertheless, a
straightforward application of it would have avoided considerable mathematical
difficulties in the literature and, occasionally, yielded better and simpler results.
It seems also the simplest description of the mechanism behind many observed
distributions, and therefore suited for a theory of tests.

To start in a purely formal manner, consider an arbitrary cumulative distri-
bution function (c.d.f.) F(z, a), depending on a parameter a, and another c.d.f.
U(a). Then

1.1) Gl) = f F(z, a) dU(a)

(the integration extending over the domain of variation of @) is again a c.d.f.
If, in particular, U(a) is a step function, (1.1) reduces to

(1°2) G(x) = ZptF(x, ai))

where p; is the weight attached to a; (we have, of course, p; > 0, Zp; = 1).
Instead of (1.2) one can write more simply

(1.3) G(x) = ZpF(z),

where the F;(z) are arbitrary e¢.d.f.’s. Of course, F(z, ¢) and U(a) may depend
on additional parameters, and the procedure can be repeated.

The statistical meaning of (1.3) is clear. Consider a population made up of
several subgroups A;, Az, -+-, mixed at random in proportions py:ps: --- .
If Fi(z) is the c.d.f. of some character in 4;, then G(z), as defined by (1.3), will
represent the c.d.f. of that character in the total population, provided that the
subgroups A; are statistically independent. Similarly (1.1) describes an infi-
nitely composite population. Postponing a discussion of the property of con-
tagion to the last section, we shall first deduce a few properties of the compound
Poisson-distribution, considered first by Greenwood and Yule. Neyman’s
“Contagious Distributions of Type A’ as well as the Polya-Eggenberger distri-
bution belong to this class. Our next example of a special case of (1.1) is what
F. E. Satterthwaite [16] called the “Generalized Poisson Distribution.” It has
been independently discovered by many authors and represents heterogeneity
of quite different a nature. Instead of further examples we shall, in the fourth
section, show how Neyman’s most general contagious distribution can be de-
duced by a repeated application of (1.1).

* Incidentally, attention may be drawn to an argument by Greenwood and Yule showing
that the x2-test when applied to the Poisson distribution is biased and tends to exaggerate
the goodness of fit. The argument could be amplified from other experience.
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Notation: If F(zx) and G(x) are the c.d.f.’s of two independent variates X and
Y, then their convolution, (that is to say the c.d.f. of X 4 Y) will be denoted by
F(z)*G(x). Thus

oo
(1.4) F(z)*G(z) = L F(z — y) dG(y).

More particularly we shall write
(1.5) F@)+F(z) = F"(),
' F™()*F(z) = F*"™°(z).
We shall denote by E(z) the unitary c.d.f.

0 f 1
(1.6) B = {1 for ii 1,

so that E™(z) = 0 for z < n, and 1 for z > n.

2. The compound Poisson distribution. Consider the well-known Poisson
expression
@.1) s 0) = %

. b n! )
where the parameter @ > 0 gives the expected number of “events”. We shall
refer to (2.1) as the simple Poisson distribution. If different individuals of a
population are associated with different values of a, and if the character a is
distributed according to the cumulative probability law U(a), the probability
of n events in the total population will be given by

2.2) — £ ) e‘“%:dU(a).

Following Greenwood and Yule we shall refer to (2.2) as the compound Poisson
distribution. Referring for an interpretation to the last section, we first con-
sider a few special cases.

a) If U(a) is a step function we are led to expressions of the form

2.3) T = —1—‘ > pie¥al.
n. 4,
Such a distribution has been successfully applied by C. Palm [12] to problems of

telephone traffic, and by O. Lundberg [9] to sickness statistics.
b) If U(a) is a Pearson Type III distribution

o= GF,fy 7
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(withd > 0, » > 0), then

)
2.5) o = %1.'11(:<—Z)‘7) a4+ a7 (1 i d)».
d

This is the Polya-Eggenberger distribution in its usual form, and has in this form
(with a slight change of notations) been derived by Greenwood and Yule.
c¢) If a takes on the values kc only, where ¢ > 0 is a constant and k& =

1, - -+, and if a is distributed according to the Poisson law
Ak
(2.6) Prob {a = kc} = ¢ i
then
_ X_c_ S k_n P k
(2.7) = Z% LG

This is Neyman'’s contagious distribution of type A depending on two parameters
(cf. section 4). If, instead, a is distributed according to a multiple Poisson law
of form (2.3) we arrive at Neyman’s more-parametric distribution of type A.
They are, of course, essentially linear combinations of expressions of form (2.7).

It follows from the theory of Laplace transforms that two compound Poisson
distributions associated with different c.d.f.’s U(a) are never identical.

The cdmpound Poisson distribution gives a simple explanation of a phenome-
non recorded by Neyman and observable in many instances. In the experi-
ments described by Neyman “the attempts to fit the Poisson Law - - - failed
almost invariably with the characteristic feature that, as compared with the
Poisson Law, there were too many empty plots and too few plots with only one
larva”. It is easily checked in the literature that similar situations arise fre-
quently. Now the Poisson distribution is usually fitted by the method of
moments. Accordingly, the compound Poisson law (2.2) ought to be compared
with the simple Poisson distribution with the same mean valve. The mean
value of (2.2) is

@58) m = fo " adU(a),

so that (2.2) ought to be compared with the Poisson distribution «(n; m). Now,
whatever the c.d.f. U(a), we have always

(2.9) xo = x(0, m)
and
(2.10) ™o = ™)

m (0, m)"
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As a matter of fact, using Lagrange’s form for the remainder in Taylor’s for-
mula, we have

m=e f ) " dU(a)
2.11) >
2 6™ [ {1+ (n— 0} U@ = ™ = 20, m),

which proves (2.9). Similarly

mmy — T = ""fo " *(m — a) dU(a)
2.12) .
> e""'_£ (m — a)dU(a) = 0,

which proves (2.10).

The above theorem shows that, whenever the material under observation is not
quite homogeneous so that the compound Poisson law applies instead of the simple
one, there will be too many cases with “no event” and, as compared with these cases,
too few with ‘““one event”’. It should be noticed, however, that it is not strictly
true that always

(2.13) m < w(1, m).

As a matter of fact, even in the numerical example given by Neyman, the com-
puted value m; exactly equals the observed value. Still, the inequality (2.13)
will hold whenever the third moment about the mean of U(a) is smaller than
twice the second. Writing

ot = fo " (a — m) dU(a),
(2.14) .
M= fo (@ — m)*dU(a),

and using two more terms in the Taylor development of ¢™* than in (2.11) and
(2.12) we see that

—m P
(2.15) m > € {1 +% — M
and
(2.16) mmo — m > ¢ "{a® — IM]}.

These inequalities are slightly sharper than (2.9) and (2.10), and often permit us
to estimate the variance of U(a).
We note furthermore that the variance of the compound Poisson distribution is

2.17) S+ m
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as compared with the variance m of the corresponding simple Poisson distribution.
Finally the following important property of the compound distribution may be
mentioned: Consider two independent variates X and Y distributed according to
two compound Poisson distributions {r$’} and {v$’} associated with the c.d.f.’s
Ui(a) and Us(a), respectively. Then the variate X + Y is distributed according to
a compound Poisson law {m,} associated with the c.d.f. Ua) = Ui(a)*Us(a)

(cf. (1.4)).
It suffices to note that U;(a) = 0 for @ < 0, so that

U@ = [ U@ - 8 dU);
therefore, after a permitted change of the order of integration

- [ ~ 24U
= j:n dUs(s) j:w e"“%:dUl(a -9
- f: dUs(s) fo s AT)

=1 a0 @
Z“ T a—k 3

the last expression represents the convolution of {z{’} and {x{’}.

Neyman’s distributions of type A with two parameters are special cases of a
compound Poisson process where U(a) is a step function with jumps at equidis-
tant places, the jumps being given by a simple Poisson distribution {x(n; \)}.
Now the convolution of two such distributions is again a simple Poisson distribu-
tion {w(n; 2\)} with jumps at the same places; hence the convolution of two
distributions of type A is again a similar distribution with one parameter doubled.

As mentioned before, the notion of a compound Poisson distribution is due to
Greenwood and Yule [6]. The time dependent compound Poisson process has
been the object of detailed investigations by J. Dubourdieu [2] and O. Lundberg
[9]. The latter has discussed also the problem of fitting the compound Poisson
process to empirical distributions.

3. The generalized Poisson distribution. Let F(z) be an arbitrary c.d.f.
Then its n-fold convolution F™*(x) (cf. (1.5)) may be considered as a c.d.f.
depending on a parameter n. Choosing, for the latter, the simple Poisson dis-
tribution (2.1) and performing the operation indicated in (1.1), we arrive at the
c.d.f. of the generalized Poisson law

3.1) G(z) = E -°“ | F(@).
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If, in particular, F(x) is the unitary function (1.6), we have the ordinary Poisson
law

0 n [z] n
(3.2) II @) = Z% e %! E"(z) = "Z_% e %!

in its cumulative form.

The most frequently encountered application of the generalized Poisson dis-
tribution is to problems of the following type. Consider independent random
events for which the simple Poisson distribution may be assumed, such as:
telephone calls, the occurrence of claims in an insurance conipany, fire accidents,
sickness, and the like. With each event there may be associated a random
variable X. Thus, in the above examples, X may represent the length of the
ensuing conversation, the sum under risk, the damage, the cost (or length) of
hospitalization, respectively. To mention an interesting example of a different
type, A. Einstein Jr. [5] and G. Polya [13, 14] have studied a problem arising out
of engineering practice connected with the building of dams, where the events
consist of the motions of a stone at the bottom of a river; the variable X is the
distance through which the stone moves down the river.

Now, if F(z) is the c.d.f. of the variable X associated with a single event, then
F™ (z) is the c.d.f. of the accumulated variable associated with n events. Hence
(3.1) is the probability law of the sum of the variables (sum of the conversation
times, total sum paid by the company, total damage, total distance travelled by
the stone, etc.).

In view of the above examples, it is not surprising that the law (3.1), or special
cases of it, have been discovered, by various means and sometimes under dis-
guised forms, by many authors. Quite recently Satterthwaite [16] was led to it
(in the above simple form) from problems in insurance. Related (but less ele-
gant) considerations may be found in a paper by W. G. Ackermann {1]. Simple
as they are, the above considerations leading to (3.1) furnish a complete solution
of the problem in all the cases mentioned. Unfortunately, the special features
of the problems often so overshadow the essential point, that one is often led to
unnecessarily complicated and incomplete solutions. As an example of the diffi-
culties in considering special cases we mention that Polya [13, 14] was led to a
partial differential equation of the hyperbolic type, which conceals the elementary
nature of the problem.

If F(z) is itself a Poisson c.d.f. (3.1) reduces to (2.7). Thus Neyman’s distribu-
tion of type A depending on two parameters is both a compound and a generalized
Poisson distribution. We shall later on see that the generalized Poisson distri-
bution plays an even more important réle in Neyman’s theory.

The main properties of (3.1) are easily derived using characteristic functions.
If o(z) is the characteristic function of F(x), the characteristic function of G(z)
is

(3.3) Y(2) = @D,
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Accordingly the r-th semi-invariant of G(x) equals the r-th moment of F(x) multi-
plied by a™*. Moreover it is readily seen that the r-th convolution of G(z) with
itself is again a function of type (3.1), only with a replaced by ra. Neyman’s

Proposition II is a special case of this remark.

4. Neyman’s contagious distributions. As an illustration of the general
applicability of the operation (1.1) we shall consider the typical example treated
by Neyman. Consider the distribution of larvae in a field. The field is divided
into plots of equal areas and we are interested in the probability c: that exactly
k larvae are found in a certain plot. Now we assume with Neyman:

(#) The larvae may come from various litters. It is assumed that the proba-
bility that exactly » litters are represented on our plot is given by the simple
Poisson distribution* (2.1). () The probability that there are exactly n sur-
vivors is the same for all litters and will be denoted by p(n). (¢%) If, in any
particular litter, there are exactly n survivors, the probability that k of them are
found on the plot under observation is given by the binomial distribution. We
shall write the latter in its cumulative form

4.1) B(z, n, u) = ?30 (Z) w1 — w)"* E¥(x),
(cf. (1.6)). (i) The parameter u in (4.1) is characteristic for any particular
litter (and varies, in particular, with the position of the litter relative to the par-
ticular plot under observation). The c.d.f. of w (which characterizes the distri-
bution of litters in the field) is supposed to be known and will be denoted by F (u).
The litters are statistically independent.

Now for any particular litter the probability that at most & survivors will be
in the plot under observation is given by

«2) Ll w) = 3 p(WBG, n, w),

which is a special case of (1.2). Here u is the parameter for the litter picked out.
Accordingly, the probability that at most k survivors from any one litter will be
found on our plot is

4.3) L(k) = j; 'Lk, w) dP (),

and this is the second application of the.operation (1.1). Since any number of
litters may be represented on our plot, the final expression for the probability

4 Actually Neyman at first assumes the number of litters in the field to be finite and
considers therefore the binomial instead of the Poisson distribution. Later, however, a
passage to the limit is performed which is equivalent to the above assumption. It will be
seen that in the following consideration the Poisson distribution may be replaced by any
other distribution.
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that at most k larvae will be found on our plot is obtained in the form of a
generalized Poisson c.d.f.

(4.4 Ck) = i e’ 9:; L™ (k).
n=0 n:

This is the desired c.d.f. For the desired probability ¢, we have ¢, = C(k) —
Ck — 1).

We specialize now with Neyman the assumption (iz) to the effect that the dis-
tribution function {p(n)} is a Poisson distribution

“5) pm) = X

The distribution (4.2) then becomes the c.d.f. of a generalized Poisson distribu-
tion, since B(zx, n, u) = B™ (x, 1, u).
The simplest special case arises when all litters are characterized by the same

value of the parameter, say v = u,. Then F(u) = (:) and L(k) = L(k, uo).

Writing L'(k) = L(k) — L(k — 1) for the probability that exactly k survivors
from any one litter will be found on our plot, we have

Ly =Y e* X (n) ug(l — uo)"™
nek n! k
(4.6) .
= —\ug ()\uo)
k!
The c.d.f. (4.4) then reduces to the form (2.7). Similarly, when F(u) is a step
function we arrive at Neyman’s more parametric distributions of type 4.
1
If F(u) = ufor 0 <u <1 (rectangular distribution), then .[) B(k, n, u) dF (u) has

only jumps of magnitude 1/(n + 1), and
00 —~\y B
A

. L'(k) = —,
(#7) ) g (n + 1!

This leads to Neyman’s function of type B. The characteristic function of
(4.7) is readily seen to be

1&“““—1

@) = 3 1

so that the characteristic function of the final c.d.f. C'(k) becomes

1" —1
exp {“ (x = ‘)}

in agreement with Neyman’s formula.
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5. The nature of contagion. It is well known that the simple Poisson dis-
tribution describes mutually independent events; in other words, with a Poisson
distribution the numbers of evénts in two non-overlapping time intervals are
uncorrelated and the occurrence of an event has no influence on the probability
of occurrence of further events. Accordingly, the compound Poisson process
also applies to independent and not contagious events. "With really contagious
events (as, for example, with epidemics) the occurrence of each event increases
(or decreases) the probability of further events. Greenwood and Yule [6] de-
veloped a very general scheme for such events but, due to the very generality,
their formulas became too complex for practical applications. They considered
the compound Poisson process, and, in particular, the Polya distribution (2.5),
as an alternative hypothesis. Accordingly, they interpreted the good fit of that
distribution to accident statistics as indicating that there was no contagion but
that proneness to accidents varies with the person.

Considering a very similar problem, Polya and Eggenberger were later on led
to consider a special model of true contagion. This turns out to be the simplest
case of the general Greenwood-Yule scheme, but this had been overlooked by
them. Curiously enough, Polya was led exactly to the distribution (2.5) which
Greenwood and Yule found as an alternative to contagion. It is therefore seen
that, contrary to a wide-spread opinion, an excellent fit of Polya’s distribution to
observations is mot necessarily indicative of any phenomenon of contagion in the
mechanism behind the observed distribution. In order to decide whether or not
there is contagion, it is not sufficient to consider the distribution of events, but
a detailed study of the correlation between various time intervals is necessary.’

The double interpretation of Polya’s distribution leads to an understanding
of the compound Poisson distribution. To the observer the compound Poisson
distribution will always appear ‘‘contagious’; however, this contagion is not in-
herent in any phenomenon in nature, but sitmply in our method of sampling. As a
matter of fact, with a compound Poisson distribution the parameter a is a ran-
dom variable.® TIts a priori c.d.f. in the total population is Prob {a < z} = U(x).
Now if, for any particular sample, the observed number of events is n, then the
a posteriori c.d.f. of a in that sample ig given by

[ e ave)

0 n:

Prob {a <z} = 5,
—s S

fo &2 UG

L

5 For such studies cf. Newbold [10] and Lundberg [9]. For some generalizations of the
Polya-Eggenberger scheme see Kitagawa [17] and Rosenblatt [15].

6 Tt will be noticed that here a is actually a random characteristic in the population and
can be sampled. We are therefore not guilty of the absurdity which is usually connected
with the unfortunate use of Bayes’ theorem, when a constant is regarded as random vari-
able. If the output of a machine is distributed according to a Poisson distribution, its
parameter is a constant, characteristic of that machine. Regardingit as a random variable
means to consider the collective of non-existing similar machines and making predictions
for them, whercas we are interested in the one machine only.
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This is additional information enabling us to make better predictions for the
future or estimates of other properties of the sample. For example, if n is very
large, there is a considerable probability that the mean of a in the sample exceeds
that of the total population: accordingly, we shall expect that also in the future
the number of events in our sample will be comparatively large. In other
words, although the events themselves are strictly independent we have an
apparent contagion due to our method of observation.

It is hardly necessary to point out that the contagion studied by Neyman is
of the type just described. Any inhomogeneity of a population of type (1.1)
will lead to such an apparent contagion. However, that the Polya-Eggenberger
distribution is a member of our class of contagious distributions must be regarded
as accident and due to the possibility of its being interpreted as a compound
Poisson distribution.

REFERENCES

[1] W. G. AckErMANN, ‘‘Eine Erweiterung des Poissonschen Grenzwertsatzes und ihre
Anwendung auf die Risikoprobleme der Sachversicherung,”” Schriften des Mathe-
matischen Instituts und des Instituts fur Angewandte Mathematik, Univ. Berlin,
Vol. 4 (1939), pp. 211-255.

[2] J. DuBouRrDIEU,” ‘‘Les fonctions absolument monotones et la théorie mathémathue de
I’assurance-accidents,” Comptes Rendus de I’Acad. Sc., Paris, Vol. 206, (1938),
pp. 303-305, 556-557.

[3] F. EGGENBERGER, ‘‘Die Wahrscheinlichkeitsansteckung,”” Mitteilungen der Vereini-
gung Schweizerischer Versicherungs-Mathematiker, 1924, pp. 31-144.

[4] F. EccENBERGER and G. PoLya, “Uber die Statistik verketteter Vorgénge,”’ Zeitschrift
Sfur Angewandte Mathematik und Mechanik, Vol. 1, (1923), pp. 279-289.

[5] A. EINSTEIN, JR.,‘Der Geschiebetrieb als Wahrscheinlichkeitsproblem,’’ Mitteilungen
der Versuchsanstalt fir Wasserbau an der Eidgendssischen Technischen Hochschule,
Zirich, 1937, pp. 3-112.

[6] M. GrReeNnwoop and G. UpNy YULE, ‘“An inquiry into the nature of frequency dis-
tribution representative of multiple happenings with particular reference to
the occurrence of multiple attacks of disease or of repeated accidents,”’ J. Roy.
Stat. Soc., Vol. 83 (1920), pp. 255-279.

[7]1 T. Krracawa, ‘“The limit theorems of the stochastic contagious processes,”” Mem.
Faculty of Sc., Kytsyt Imperial University, A, Vol. 1, (1941), pp. 167-194.

[8] T. Kitacawa and S. Huruya, ‘‘The application of the limit theorems of the conta-
gious stochastic processes to the contagious diseases,” Mem. Faculty of Sc.,
Kytsyt Imperial University A, Vol. 1 (1941), pp. 195-207.

[9] O. LunpBERG, On Random Processes and their Application to Sickness and Accident
Statistics, Thesis, University of Stockholm, 1940.

[10] E. NewsoLD, ‘‘Practical applications of the statistics of repeated events, particu-
larly to industrial accidents,”” J. Roy. Stat. Soc., Vol. 90 (1927), pp. 487-547.

[11] J. NEYMAN, “On a new class of ‘contagious’ dlstrlbutlons applicable in entomology
and bacteriology,” Annals of Math. Stat., Vol. 10 (1939), pp. 35—57

[12] C.PaLm,‘‘Inhomogeneous telephone traffic in full availability groups’’, Ericsson Tech-
nics, 1937, no. 1. (Stockholm). pp. 1-36.

7 A book by J. Dubourdieu, Théorie de l’assurance-maladie, Paris, 1939, has been an-
nounced, but was not available to the present writer. It presumably treats the compound
Poisson distribution more fully than the short notes quoted above.



400 W. FELLER

[13] G. Povrya, “‘Zur Kinematik der Geschiebebewegung,’’ Milteilungen der Versuchsanstall
flir Wasserbau an der Eidgenossischen Technischen Hochschule, Ziirich, 1937.

[14] G. PoLya, ‘“Sur la promenade au hasard dans un réseau de rues. Actualités Scientifiques
et Industrielles, No. 734, (1938), pp. 25-44.

[15] A. RosENBLATT, ‘‘Sur le concept de contagion de M. G. Pélya dans le calcul des proba-
bilités. Applications 4 la peste bubonique au Pérou,” Actas Academ. Ciencias
Lima, Vol. 3 (1940), pp. 186-204.

[16] F. E. SATTerTHWAITE, ‘‘Generalized Poisson distribution,” Annals of Math. Stat.
Vol. 13 (1942), pp. 410417.



