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of the result, but is easily shown to be the correct expression. Upon differentiat-
ing k times (0 < k£ < m,) all the terms in the summation except the one cor-
responding to 7 = 7 will contain the factor (z — @)™ ** and will therefore
vanish for £ = a,. Moreover, the non-vanishing term, before differentiation,
will agree, up to and including terms containing (x — a,)™, with the Taylor
expansion of f(x) in powers of z — a., since the product expression within the
brackets will be exactly canceled, as far as terms of degree m, , by the n binomial
expansions. Hence the kth derivative of the non-vanishing term in the summa-
tion will be f* (a,) for z = a,. This establishes the formula.

This formula is clearly equivalent to the Newton divided difference interpola-
tion formula with repeated arguments [1, p. 33], the argument a; occurring
m; + 1 times. Therefore, if f(z) is any function other than a polynomial of
degree N or less, it is necessary to add a remainder term [1, pp. 22-23] of the form

5@ 1L @ - e,

where fy(z) denotes the limiting value [1, pp. 20-21] of the divided difference of
order N involving the arguments z, @, a1, -, @, With each argument a;
appearing m; + 1 times. The existence of all the indicated derivatives is, of
course, essential.
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NOTE ON THE VARIANCE AND BEST ESTIMATES

By H. G. Lanpavu
Washington, D. C.

The purpose of this note is to point out a certain relation between the vari-
ances, o7 and o3 , of the random variables, z; and 22 , and the probabilities,

Pit) = Pr[|zy — E@) | < ]
Pyt) = Pr{|a. — E(@)| < .

This is, if ¢ < o3 , then Py(f) > Pa(f) in at least one interval, &; < ¢ < ;.

A note by A. T. Craig [1] gave an example for which it was stated that o7 < o7
and P;(¢) < Ps(t) for every t; but, as was pointed by Neyman [2], calculation of
the probabilities involved shows the statement to be incorrect.

The present result provides a certain justification for the use of minimum
variance estimates by assuring that no other estimate with the same mean can
have, for every value of ¢, a greater probability of a deviation from the mean
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less than ¢. If an estimate can be found which has a greater value of P(t) for
all ¢ than does any other estimate, it is necessarily the minimum variance
estimate.

The theorem below includes a similar relation for equal variances. This
theorem can be obtained from known general results on inequalities for distri-
butions determined by moments, [3] and [4]. The formulation given here with
its significance for estimates does not appear to have been remarked.

TueoreM. If the random variables, z, and x», have finite variances, o; and
o, and :

o1 < o3,
then, either
Q@) = Pa() — P30,

1s equal to zero at all points of continuity, which can occur only for o3 = o3 , or there
18 an tnterval, t; < t < t2, tn which Q(t) is positive.
Proor. We write the variance as the Stieltjes integral,

o= fo & dPy(2),

and similarly for o3 .
Let

S(T) = fo ’ £ dP(t) — fo ’ £ dPy(t) = fo ’ £dQ(t)

T
- ' -2 [ Qe a,
integrating by parts.
Now

Tl — Py(T)] =T f ) dPi(t) < fT ) & dPy(t),

and since ¢} is finite, f £dPi(f) — 0 as T — o, so that lim 771 — Py(T)]
T T =00
= 0, and similarly for P,(t).
Hence T°Q(T) = T’[1 — Py(T)] — T*f1 — Py(T)] >0 as T — o, and since

by definition lim S(T) = i — o3 it follows that

T—00
ol — 05 = —2£ Q) dt.

From this it can be seen that either, Q(¢) vanishes at all points of continuity,
in which case o; = o3, or Q(f) must be positive in some interval, since other-

wise f tQ(?) dt must be negative and hence o; — o3 > 0 contrary to the assump-
o

. 2 2
tion, 01 < 73 .
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