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1. Introduction. In solving certain physical problems (Brownian movements,
shot effect) one is often led to the study of superpositions of random pulses.
More precisely, one is led to sums of the type

1) F@) = ;lf(t - t),

where N and the ¢;s are random variables and a function P (¢) is given such that
f P(t) dt represents the average number of pulses occurring during the time
A

interval A.

We propose to give a fairly detailed treatment of those statistical properties
of F(t) which may be of interest to a physicist and at the same time pay careful
attention to the mathematical assumptions which underly the applications. It
may also be pointed out that our results could be applied to the theory of time
series.

2. Statistical assumptions and the distribution of N. The statistical assump-
tions can be formulated as follows:
1. The ¢;s form an infinite sequence of independent identically distributed
random variables each having p(t) as its probability density.

2. N is capable of assuming the values 0, 1,2, 3, - - - only, and N is independent
of the ¢,s.

3. If M(A; N) denotes the number of those ;s among the first N, which fall
within the interval A, then for non-overlaping intervals A, and A, the ran-
dom variables M (A; ; N) and M (A, ; N) are independent.

We now state our first theorem.!

TaeoreM 1. Assumptions 1, 2, 3 imply that N is distributed according to

Poisson’s law, 1.e.

b
— — h
Prob {N =17} =¢ 1

+o0
where h = [ P(t) dt.

1For a different approach to Poisson’s distribution see W. FELLER, Math. Ann. 113
(1937) in particular pp. 113-160.
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Our proof is based on considerations of characteristic functions. Let ya(x)
be 1 if = belongs to the interval A and 0 otherwise. Thus

M(A; N) = ké Va(te).

From the independence of M (A, ; N) and M(A: ; N) it follows that for every
pair of real numbers £ and n we have’®

E [exp {’L (5 g Ya, () + 9 Iﬁ; \bAg(tkv))}]
=FE [exp {'L’E g:l z[/Al(tk)}] E [exp {iﬂ ’g ‘PAz(tk)}:I ;

where E[z] denotes the mathematical expectation, or mean value, of z. Letting
q(r) = Prob {N = r} and using first the independence of N and the ¢/’s and then
the fact that the ¢/s are independent and identically distributed we obtain

3= a()(Elexp (i, + b,
@) . .
= 2. 4()(Blexp {iths,O})" 2 4@) Elexp {inga, )11V

An easy calculation gives

Hlexp {igha, @)1 = 1+ € = 1) [ p() a,
Blexp {inps,®)] = 1+ " = 1) [ p)

Blexp 1i(epa,® + b1 = 1+ = D) [ p0 e+ =1 [ poa
The last equation follows from the fact that A; and A; do not overlap. Putting
t=gp=mzxz=1— 2[ p@) dt,y =1— 2f p(t) dt, o(x) = Zq(r)z” we see that
(2) yields the function;i equation *

3) o + y — 1) = e(@e®).

One cannot ascertain that (3) holds for all real = and y. First of all the defining
power series of () is not known to converge outside the unit circle and secondly
it is not obvious that each pair of real numbers z, y between —1 and 1 is such
that non-overlapping intervals A; , A; exist for which

=1—2j;1p(t)dt and y=1—2fA2p(t)dt.

2 We use the symbol R and E[R] interchangeably to denote the average (mathematical
expectation) of E.
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However, if one restricts oneself to small A; and A, the functional equation (3)
is seen to hold in a sufficiently small neighborhood of 1. This is sufficient (in
view of the analyticity of ¢ in the unit circle) to determine ¢ ().

In fact, differentiating (3) first with respect to 2 and then with respect to y
we get

d@e'y) = '@ +y — 1.
Letting ¥ = 1 and putting ¢'(1) = h we have
¢"(x) = he'(x),
which yields immediately
o(z) = Aé” + B.

An entirely elementary reasoning (which employs the fact that Aé” + B must
satisfy (3)) leads to the conclusion that B = 0, 4 = ¢ which in turn implies

at once that
Y
qg(r)=¢ =K

Finally,
fA P(t) dt = EIM(N;A)l = E [:; !PA(tk)]
= ( fA p(t) dt) et i R h fA p(t) dt,

= r!

and therefore
+0
[ P@)dt=h  P@) = hp().
Since h is the mean value of N (i.e. N) we shall use N instead of h.

3. Fourier coefficients of F(t) and their statistical properties. In physical
applications it is often convenient to assume that the “pulse function” f(t) is
periodic with period 7T'(T large) and one might therefore restrict oneself to the
interval (0, T).

It is furthermore assumed that both f(f) and P(¢) are sufficiently smooth® so
as to justify the formal operations on Fourier series performed below. Since
we work in the interval (0, T) we assume that P(f) = Ofort < Oand ¢t > T.

Expanding f(t) in a Fourier series in (0, T') we get

10 ~ ¥ alon) exp Gond), = ¥,

—®°

3 For instance f(¢) and P(¢) may be assumed to be of bounded variation. Actually, much
less severe restrictions suffice but in investigations of this sort far reaching generality would
only impair the exposition.
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and thus
F@) ~ 2 a(wr)b(wr) exp (wrt),
where
N
b(wr) = Z‘i exp (—twit;).
=
Note that

Elexp (—iwt)] = l ' exp (—iwt)p(t) di

) %, fo exp (PO &t o

= = c(w) — 28(w)
1 (" o0) ~ °
T fo P() dt
and put
N to +o
EF@#)] = 0 Zw a(wr)p(we) exp (faxt) = T fV_‘, a(wi)p(wr) exp (Gaxd).
i cos (wit;) — Ne(wr)
x® = = _
VN ’
_ ZN: sin (wk t,') - NS(wk)
i = = _ .
VN

T
Thus remembering that N = f P(¢) dt we may write

F@t) — FQ@) xX® _ iy ®
_\/N E a(wre) (Xx ) exp (iwrt)

or

F@) — F(t) ~A/T @y
— T Z awr) (X5 ) exp (dwt).
Vo0

We can now state the following: - _

THEOREM 2. In the limit as N — o« each X" (and Y) is normally distrib-
uted with mean 0 and variance ¥ + 2c(2wr) (3 — 2c(uwi)).

Th(% proof, as usual, is based on the consideration of the characteristic function
of XV
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‘We have
Elexp {itX{}]

exp {—4V/N c(wn)} exp (—N) i (i\/;)'

r=0

(Lo

7€ COS wi

= exp {—itV/N c(w)} exp (—N) exp {JVE [exp {Wt}]} .

In deriving this formula use has been made of the facts that the ;s are inde-
pendent and identically distributed, that N is independent of the ¢s and that
N is distributed according to Poisson’s law. It is now easy to see that as N — oo

the characteristic function of X"’ approaches

exp {—G + }e(2wn)E’}

uniformly in every finite #interval. This, in view of the continuity theorem
for Fourier-Stieljes’ transforms, implies our theorem. It should be mentioned
that it is tacitly assumed that even though N = Tp(0) approaches « it does it
in such a way that the ratio p(w)/p(0) (and hence ¢(w)) remains constant (or
more generally, approaches a limit). )

By considering the characteristic function of the joint distribution of X
and X (| k| # |1|) (or any other pair like, for instance, X" and ¥{", in
which case no restriction on k, I is necessary) we are able to prove

TueoreM 3. In the limit as N — o the distinct Fourier coefficients of (F(t) —
E[F(®)])/V/p(0) are normally correlated (i.e. their joint distribution function is the
bivariate normal distribution).

It is also clear that the higher correlations (i.e. between more than two coef-
ficients) will lead to multivariate normal distributions with coefficients expressible
in terms of Fourier coefficients of P(f). ‘

We do not state Theorem 3 in more definite terms because in the next section
we shall give a more convenient and useful way of handling correlation proper-
ties of our Fourier coefficients.

4. Statistical structure of Fourier coefficients. Let us assume that P() >
v > 0 and that the Fourier series of P(t) converges everywhere.
Expanding 4/ P(?) in a Fourier series in (0, ') we have

00

VP(t) = _Z o(w) exp (wrt),
and in particular (since p(t) = P(t)/N)

Vp(t) = \/Lﬁ 2 o(w) exp (fwrty).

—0
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We can now write
X, exp (—iwit;)

b(wr) = EGXP( —twnty) = 2 TVl 10)

i=

_ 1l & exp (1(w — wi)t;)
= VR (""){; V) }
_ L5 L exp (dwnty)|

Vi ; (wl"“wk){; V(%) }

8

Z o(wr + wr)o(—wr) + Z o(w i+ wk){ 1 z”;exi)/;z:)t, - T«f(—wz)}

Il
‘i

I

T lzw o(w + wr)a(—an)

+ '\/T E 0'(0’1 + wk){'\/NTJZ-;e}'{f/SE:l)t) - \/Ta(-wﬂ}.

Put ¢(w) = a(w) + i8(w), note that by Parseval’s relation

plow) = zi olwr + w)o(—wr),

=00

and introduce random variables U™ and V" by means of the formulas

7 1 X wrt; —
U( ) = '\/-—T' F-Zl co'\s/iT::)’) - '\/T a(wl),

14} Sln (O)l t’)

BT \/_—T:Z; V() = VT 8.

Thus
blew) = Tp(wr) + VT ‘_Z‘ olwr + @) (UT = V@)

and we have the following theorem. _ _
TrEoREM 4. In the limit as N — « the random variables UL, U, v,

U(ﬂ ) V(N) - - - are independent and normally distributed (each with mean 0 and
variance ).

This theorem can be proved in a manner exactly analogous to that of Theorem
2. . We need only consider the characteristic functions of the joint distributions
of U’s and V’s and treat them in the same way as we treated the characteristic
function of the distribution of a single X in the proof of Theorem 2. One thing,
however, should be strongly em ﬁphaswed The proof of independence (in the
limit as N — «) of U® and UP (Jt]#|m l ), for instance, depends on prov-
ing that

BT = 0
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This in turn depends essentially on the fact that N is distributed according to
Poisson’s law.
In fact,

But

- E[g1 M%g&ﬁf] n E[;, ciz%____c\c}%c]

= E[]_V_(J_(VN_;;_I_)] Ta(w)e(wm),

and finally

o o2
ElU®M Ul = (N—(K_,)z_N - 1) Ta(w)a(wn)-
Since for Poisson’s distribution N* = N + (N)” we get

EU® U] = o.

Also the proof that E[| U |®] = % employs essentially the fact that N is
distributed according to Poisson’s law.

In view of Theorem 4 we can restate Theorem 3 in a form which is both useful
and illuminating inasmuch as it describes completely the statistical structure
of the b(w)’s and hence of the Fourier coefficients of F(t).

TaporeM 5. For the purposes of finding correlations between the b(wr)’s it
suffices to replace each b(wi) (in the limit as N — ) by its ““ statistical representa-
tion”’

o0

To(ww) + VT Z_Z_w o(wr + w)ds,

where A_, is the complex conjugate of Ay, Ao, A1, Az, - - - a sequence of independent
complex-valued random variables and each Ay is distributed in such a way that
0, = arg Ay is uniformly distributed independent of Ay and the density of the prob-
ability distribution of | Ax| s

24¢~%, (4 >0).

Theorem 5 was proved under the assumption P(f) > v > 0. This assumption
was needed to validate the convenient artifice of multiplying and dividing by

Vp(t)-

However, even in the case when P(t) is not bounded from below by a positive
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number (it is always true that P(t) > 0) Theorem 5 remains true. It could be
proved by direct but tedious considerations suggested in section 2.

Theorems 4 and 5 can be easily extended to the case when the pulses all have
the same shape but may, at random, differ in magnitude. In other words,
instead of sum (1) we may consider the sum

N

4) F@) = X &f(t — ty),

=1

where the individual pulses are independent and a function P(e, ¢) is given such

that
et+Ae t+At
f f P(e, t) dt de
€ t

is the average number of pulses of ‘“amplitude” between ¢ and € + Ae occurring
between ¢ and ¢ 4 At.
Theorems 4 and 5 still hold provided one replaces the Fourier coefficients of

P(t) by those of
+00
[ eP(e, t) de,

and the Fourier coefficients of 1/P(f) by those of

Vo = 4/ [w EP(e, 1) de.

6. Concluding remarks and summary. If one assumes that the number of
pulses N in the time interval (0, 7') is constant instead of being a random variable
obeying Poisson’s law, then Theorems 4 and 5 fail. The failure is due to the
fact that, for instance E[U{V U] is no longer 0. However, as T — o« the
changes in correlation due to assuming N constant become negligible. On the
other hand if one assumes that the number of pulses in each of the time intervals
O, ), (r, 27), --- is fixed, the changes in correlations become appreciable.
This case can also be treated by the above methods.

The case in which p(t) is independent of time has been considered in various
connections by Schottky, Uhlenbeck and Goudsmidt and Rice*. Their investi-
gations emphasized the importance and usefulness of the harmonic analysis

of random functions.
In conclusion we summarize our results for the case of time-dependent P(e, t)

+W. ScuorTkY, Ann. d. Phys. 57 (1919) pp. 541-567.
G. E. UnrenBECK and S. GoupsmipT, Phys. Rev. 34 (1929) pp. 145-151.
8. O. Rice, mimeographed notes on mathematical analysis of random noise, as yet

unpublished.
The authors are indebted to Mr. Rice for making his notes available to them.
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by observing that in applications one may replace F(f) by its “statistical
representation’’

5) E[F®t)] + /T kg alwr) {li olw; + wk)Al} exp (twpl),
where
_ 2rk
Wi = T 3

0

EF®)] = T 2 a(wn)p(wr) exp (i),

—o0

0

[: eP(e, t) de = kz p(wr) exp (Twxt),

=00

Va® = 4/ [ epode= E olon) exp Giond),

and the A's are normally distributed complex-valued random variables for which
E[A)] = 0, ElA =1, AT = A,
Furthermore, for I > 0 the A/s are statistically independent.
Thus
F(@t) — E[F(@)] ~ kz Awr) exp (fwrt)

where the \’s are normally distributed complex-valued random variables obeying
the relation

BN P = o) [ [ Q.

If Q(t) is periodic with frequency % then it follows that A(w’) and A(w'’) are

independent unless o' + «’’ or ' — w” is an integral multiple of we, .
Finally, we mentfion that F(t) — E[F(¢)] is normally distributed with variance
s(t) given by the formula

00

$@) = ElF@) — EFR))] =T kg_:w v (wr)u(wr) exp (iwrt),

where v(wz) is the'Fourier’ coefficient of Q(t) and u(w:) the Fourier coefficient

of f*(t).



