RANGES AND MIDRANGES'

By E. J. GumBEL
New School for Social Research, New York City

1. Introduction. In the following the generating functions of the extremes
are studied in order to determine the nature of the distributions of the ranges and
the midranges.

A large sample of size n is considered to be drawn from an unlimited symmetri-
cal continuous distribution with zero mean. The difference and the sum of the
largest and of the smallest observation, the extremes, are called range and
midrange. R. A. Fisher and L. H. C. Tippett [2] have established the limiting
distributions of the largest and of the smallest member of a sample. The exact
conditions under which these distributions hold have been given by R. von
Mises [4]. For a normal distribution, L. H. C. Tippett [7] has calculated the
numerical values of the mean range and the first four moments of the range for
sample sizes varying from 2 to 1000. He has shown that, for sample sizes
exceeding 200, the correlation between the largest and the smallest observation
may be neglected. Later, E. S. Pearson [5] has calculated the probability
function of the range for small samples (n = 2 to 20) taken from a normal
population. These calculations are very laborious. Recently, W. E. Deming
[1] has applied the range to quality control.

The concepts “‘extremes’”, “range” and “midrange’ allow a simple gencraliza-
tion. Let .z and x, be the mth observation in increasing and in decreasing
magnitude, henceforth called mth value “from below’”” and “from above”. As
long as the index m is small compared to the sample size n, the mth values under
consideration are extremes. The difference and the sum of the mth extreme
observations are called the mth range and the mth midrange. We will investigate
the asymptotic distributions of the mth extremes, of the mth range, and of the
mth midrange. Assuming that the number of observations is very large, the
correlation between the largest and the smallest observation may be neglected.
Then the mth range and the mth midrange are the difference and the sum of two
independent variates, the mth extremes.

It was found that the distribution of the mth range is skew and the distribution
of the mth midrange is of the generalized logistic type, which is symmetrical.
For m increasing the distributions of the mth extremes, the mth ranges, and
the mth midranges converge toward normality.

2. Generating functions of the mth extremes. let ¢(x) be an initial con-
tinuous symmetrical distribution with mean zero; let u, be the most probable
mth value from above; let a,,, be defined by

1 Oy, = ;;¢(Um)-
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Under conditions given in an earlier paper [3] the distributions f.(2.,) and ,,f(n2)
of the mth extremes are, for large n and small m

m

(2) fm(xm) = an Z;nﬂ_‘m e—mym—me"l/m; ,,.f(,,.:c) = j',,.(—x,,.)
where
(3) Ym = O(,,,(II),,. - uM)

is a reduced extreme hzth value.
The moment generating function G.(t) of the mth extreme value from above

obtained from the preceding equations is
m +o0
G,,, = _L Umt [ ~MYmt+ym(t/ay)—me~ym -
O=m-m" L, ° dy

Introducing

e ' =2

the integral becomes

@
— -1 — t -
f zm (t/ap) 16 mz dz = r. <m — 2 )m m+(¢/ay)
0 (227

whence

@ Gult) = e*'mtlenT (m . ai) / r(m).

m,

To obtain the moments of the mth extreme value from above, the fundamental
property of the Gamma function is used; whence
t

m—1M — vV — —
G (t) — e(t/cz,,.)(u,,.at,,.+l¢7m) H QAm T (1 _ i) .

y=1 m — v (o7

Finally, by reversing the order of multiplication the moment generating function
of the mth extreme value from above becomes

. m—1
(5) G,,.(t) = e(t/am)(umamﬂgm) II (1 . _t_) T (1 . ai) .

v=1 Vi,
The mean Z,, of the mth value from above obtained from (5) is

_ 1 m—ll
(6) xm=um+&_‘ lg’m—Z—-i-c

y=1V

where ¢ = .57722 is Euler’s constant.
The seminvariant generating function L,.(f) of the mth extreme value from

above becomes from (5) and (6)

Lm(t)=i<"§}_c>+'§lg<1—;i~m>+lgr<1 —ai>

Ay \ v=1 y=1 m



416 E. J. GUMBEL
and after expansion
0

(7) Lm(t) = ; mtx_vv Sym

where the sums

s
Xl
-

\"

[ )

(8) Sr,m =

are obtained from the sums

™Ms

1
4 —
®) S=&r
which are known from the theory of the Gamma function. The numerical values
of the seminvariants of the mth extreme value from above A, , being the coeffi-
cients of ¢’/»! in the expansion (7) may be calculated from a table of the sums
S,, m given in an earlier paper [3].

From the generating functions (4) and (7) of the mth extreme value from above
the moment generating function ,G(f) and the seminvariant generating function
»L(f) of the mth extreme value from below are obtained by the symmetric

relation (2) as

-

(9) mG(t) = Gm(_t); mL(t) = Lm(_‘t)
and the mean ,,& of the mth extreme value from below is
6") mE = — &m.

The seminvariants An,, and ,\, of the mth extreme value from above and from
below are linked by

(10) afvn)‘m.v = (1} - 1)!Sv,m = (—l)va:m,.)\y .
The standard errors ¢, and o of the mth extreme values are
(11) nom = \/Se,m = Gmmo.

This procedure for obtaining the moments of the mth extremes from their
distribution (2) parallels closely that used by R. A. Fisher and L. C. H. Tippett
[2] for obtaining the moments of the largest and smallest value. The special
case m = 1 of the formulae (4), (9), (6), (6'), (11), and (10) leads to the moment
generating functions, the means, the standard errors, and the higher semin-
variants of the largest and of the smallest value given by these authors.

The two parameters u, and e, which exist in the distribution (2) of the mth
extremes may be calculated from the observations by virtue of equations (6) and
(11). Thus, the theoretical distributions (2) may be compared to observations
even if the initial distribution ¢(z) is unknown. For increasing m, the distribu-
tions of the mth extremes were shown [3] to converge toward normal distribu-
tions, their means and standard deviations being given by (6), (6’) and 11.
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3. Generating functions of the mth range and the mth midrange. To obtain
the characteristics for the mth range and the mth mid-range we state first some
general properties of the sum and of the difference of two independent variates
z and y, with means Z and 7 and standard deviations ¢, and ¢, . Let the distri-
butions be ¢(z) and y¥(y), and let the generating functions of the seminvariants
Azvand Ay, be L,(t) and L,(t). We write

(12) v=z+y; w=z-—y

from the sum and the difference of the two variates. Then the means # and @
and the variances o2 and o2, are

(13) T=%+4+7 D=%—§, =0+ of = o}
and the seminvariant generating functions L,(t) and L, (t) are
(14) L,(t) = Ls(t) + Ly(t); L) = L.(t) + Ly(—1).

The negative sign in the second equation (14) is obtained through the same well-
known derivation as used for the first equation (14). Therefore, the even semin-
variants of the sum are equal to the even seminvariants of the difference, whereas
the odd seminvariants of the sum and of the difference are

. 2v+1.
>\v.2v+l = >\z,2v+1 + >\y.2v+1 ’ )\w.2v+1 >\s.2v+l + ( 1) A1/.21'-4-1

If the distributions ¢(x) and ¢(y) are symmetrical one to another in the sense
(15) V(@) = ¢(—2)

then the even seminvariants of the two variates x and y coincide in size and sign
and the odd seminvariants coincide in size and differ in sign. Under the condi-
tion (15), the even seminvariants of the sum » and the even seminvariants of the
difference w are twice the even seminvariants of the variates x or y. The odd
seminvariants of the sum v are twice the odd seminvariants of the variate z,
end the odd seminvariants of the difference w vanish.

We apply these properties to the mth extreme values and write ., for 2 and ,.x
for y. According to (2) the distribution of the mth extreme from above is sym-
metrical to the distribution of the mth extreme from below in the sense (15).

The mth range w,, and the mth mid-range v, are defined by

(129 Wi = T — .m¥T; Vn = Tm + wl.
The mean #,, of the mth range, the mean 7, of the mth mid-range and the
respective variances o5, and o5, are, from (6), (6") and (11)

28,

— - - 2 2 2 m 2

(13') Wy = 2% ; I = 05 Oy = 20m = 2p0° = o = Oy, -
m

The seminvariant generating functions L, (¢, m) of the mth range and L,(t, m) of
the mth mid-range obtained from (7) and (9) are

A8)  Lm) =23 5 Son = 2a®; Lbm) = 23 2052

y=2 VOlm
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The seminvariants of the mth range are twice the seminvariants of the mth
extreme values from above. The even seminvaria.cs of the mth mid-range and
the even seminvariants of the mth range are twice the even seminvariants of
the mth extremes. The odd seminvariants of the mth mid-range vanish. There-
fore, the distribution of the mth range is skew, and the distribution of the mth
midrange is symmetrical. From the convergence of the mth extremes towards
normality it follows that the mth range and the mth mid-range tend also, for
increasing indices m, toward normality.

The seminvariants of the range and the mid-range are obtained from (13’)
and (14') by putting m = 1 and omitting the index 1. Therefore, the standard
errors ¢y, and o, of the range and of the mid-range are

(13”) ag, = :/r_é =12 0n = ao,

where « is given by (1) and ¢, stands for the standard error of the first or the
last value. The skewness B1,,, of the range and the excess 8; — 3 for the range and
the mid-range

(16) Blw = 64928, ﬁz,w —3=12= Bzv -3

are only one half of the corresponding characteristics of the largest value. The
distribution of the range is less skew and less concentrated toward the middle
than the distribution of the largest value. The moments (13) and (16) of the
range and of the midrange may also be obtained directly from Fisher’s and
Tippett’s results [2] when independence of the two extremes is assumed. The
numerical values (16) for the limiting distribution of the range differ considerably
from the values

(16") B = .309; B — 3 = .54

given by Tippett [7] for n = 1000 observations. For increasing n the approach
of the distribution of the range toward its limiting distribution is very slow.
This is reasonable as the approach of the distribution of the largest value toward
the limiting distribution is also very slow.

Until now we considered symmetrical initial distributions. The case of an
asymmetrical initial distribution may be dealt with briefly. The most probable
mth extreme value from below ,u differs then from — u,, and

1" m = :_:L‘P(mu)

differs from a, . The distribution of the mth extreme value from below is for
large n and small m [3]

m My y—memy

(21) fnf (mx) = n %*_:*m ¢
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where
(3 nY = mem® — mit)

is a reduced mth extreme value from below. The moment generating function
=G (t) of the mth extreme value from below becomes

4) -G@) = em™'m (m + ia) / I'(m)

and the moment generating functions G, (¢, m) and G,(t, m) of the mth range and
of the mth mid-range of an asymmetrical distribution obtained from (4), (4’)
and in analogy to (14) are

et(um—mu)mt((l/am)+(l/ma))F (m _ __t_> r ( _ '—t‘>/P2<m)
O mal

Go(t, m) = ¢'ntmi)pyam=Clman (m _ i) r (m + -i)/I‘z(m).
mnQ&

A

G.(t, m)
an)

Thus, the moments of the mth range and the mth mid-range may easily be com-
puted even for an asymmetrical distribution.

4. The distribution of the mth midrange. In the following we return to a
symmetrical distribution and establish directly the distribution f(v.) of the mth
midrange. Then, the generating function (14’) and the convergence toward

normality will be verified.
From (12’) the distribution of the mth midrange is

+00

flvm) = - S @m)mf (0 — Tm) AT .

Introducing (2), the equation is written

2m +o0
m [ e—mym+mum(vm—xm+um)—me‘llm—me"m("m‘zm"'"m) d
0

fom) = am m

m .

Using as before

€'m =z

the integral becomes

e ™™ (2m — 1)!

00
MA ¥V 2m—1 —mz(1+e*m¥m)
enem'm f 2 e dz = |
o mzm(l + eamv,,.)2m
The distribution of the mth midrange is therefore

W @2m — 1)! gromtm
(18) f(vm) - “m (m — 1)12 (1 + 6a,,,v,,,)2m'
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The distribution (18) will be shown to lead to the seminvariant generating
function (14’). The generating function of the mth midrange obtained from

(18) is

— |1 r®
((.‘Zn_ 1;.32.[ ea,,.v,,,(m+(tla,,.))(1 + ea,.v,,.)-zm da,,.vm.

Introducing
14 e =u"; du = —1%e™" daptm
the integral is rewritten

@2m — D! j; ! (1 — )mHelam=1y (e —1tm=2 g,

[ ,
=P(2m)r(m+£)l‘( —&—tm>
T%(m) I'(2m) :

Consequently, the moment generating function of the mth midrange is

o (o e )

I(m)

This expression is identical with the product of the moment generating functions
(4) and (9) of the extreme mth values. Therefore, equation (18) is the distribu-
tion, and equation (14') is the seminvariant generating function of the mth

midrange.
For m = 1 the distribution (18) of the mid-range becomes the so-called logistic

distribution which is commonly written

(19)

—av

oe

Accordingly, (18) may be called the generalized logistic distribution. The proba-
bility F(v) of a value equal to, or less than, v obtained from (18’) is

(18") J) =

(20) F@) =1/0 4+ ).
Therefore the distribution f(v) may be expressed by the probability F(v) through
(18") f@) = aF()(1 — F@)).

Formula (20) considered as a growth function plays a réle in population
statistics where it was introduced about 100 years ago by Verhulst [8]. Recently,
it has been widely used by R. Pearl [6]. In his treatment, the value v stands
for the time, and the function F(v) stands for the relative size of the population
at time v compared to its alleged asymptotic size.
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In the following, the influence of m on the distribution (18) is studied. The
distribution ¢n(z) of the reduced mth mid-range

(21) z2=an\/mv

is, from (18)

1 @m—1!  eVm

Vm (m— DE (14 evm)™

The probability density of the mean mth reduced mid-range increases with m.
Indeed,

(22) om(z) =

$ani0) _ _ 2m4+1
$n(0) 2vV/m(m + 1) '

Therefore, the standard error of the reduced mth mid-range decreases with
increasing index m. This is reasonable as the mth mid-range is an estimate of
the median for the initial distribution. The larger m, the nearer are the mth
extreme values to the median, and the better is the estimate.

To verify that the distribution (18) of the mth mid-range tends toward nor-
mality for large indices m equation (22) is rewritten

e
1g om(@) = lg én(0) + 20/m — 2m1g (Liie_)

Expansion of the exponential and the logarithm leads, if we neglect the third
and higher powers of the deviation z, to

2 22 22
1g 6n(2) = Ig $ul0) + 23/m — 2m<m+47n ~2 )
whence by virtue of (11)

—-«zzmv2 14
f) = Const ¢ *»™"n"",

The distribution of the mth mid-range becomes normal for large indices m.
The mean is zero, and the standard deviation is

(23) oo, = V2

am\/m
This is in accordance with the statement (13’), as S;,» tends with increasing m
toward 1/m.

6. Summary. For initial symmetrical distributions the seminvariant gen-
erating Tunctions (14’) of the mth range and the mth mid-range are obtained
from the seminvariant generating functions (7) and (9) of the mth extreme
values from above and from below. As the two mth extreme values are sup-
posed to be independent our results hold only for very large, sample sizes. The
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even seminvariants of the mth mid-range and of the mth range coincide. The
distribution of the mth range is skew and the distribution of the mth mid-range
is the generalized symmetrical logistic distribution. For increasing indices m
the distributions of the mth extremes, the mth ranges, and the mth mid-ranges
converge toward normality.
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