ON THE CLASSIFICATION OF OBSERVATION DATA
INTO DISTINCT GROUPS

By R. v. MisEs
Harvard University

Introduction. In scholastic examinations as well as in the examination of
industrial products the following probability problem arises. The individuals
of a certain population are successively subjected to trials each of which leads
to a definite score z (one real number or a group of m real numbers). Each
individual is supposed to belong to one of n classes. These classes are character-
ized by n probability densities pi(z), p2(z), - - - pa(x). One has to decide on
the basis of the observed value z to which class the respective individual belongs
and one wishes to make this decision with the smallest possible risk of failure.

For example, let us consider an examination where the three grades A4, B, C
are attributed on the basis of a simple score z (case m = 1, n = 3). It may be
assumed that an individual of the class A has a mean expected value of z equal
to %, = 75 and a normal distribution with the standard deviation a1 = 4/4/2.
The analogous values for the classes B and C may be 9; = 50, o2 = 8/4/2 and
s = 25, g5 = 12/4/2. In this case, the solution developed in the present paper
allows the conclusion that the best way of grading would be to attribute the
grade A to scores z beyond 70.0, the grade C to scores below 40.0 and B to the
rest. The corresponding error risk will be 3.9% or the success rate 0.961.

There exists, of course, one case where the solution is trivial. If the probability
densities p,(x) are limited to » non-overlapping regions R, (with p, = 0 at points
outside R,) an obvious decision can be made without any risk of failure. An
assumption of this kind underlies the usual procedure of grading. If, in the
foregoing example, an individual of class A is supposed to have at any rate a score
-beyond 60 and a class C individual less than 40, it is obvious how the grades
should be attributed without incurring any risk. It seems, however, that in
many problems the assumption of normal distributions or some other kind of
overlapping distributions is more appropriate. Then, the probability problem
has to be solved.

The solution submitted in the present paper is derived from the simplest
principles of calculus of probability without any arbitrary assumption or hypothe-
sis. If n equals 2, the problem can also be considered as a problem of testing
a simple statistical hypothesis with a two-valued parameter.' It has been
shown in an earlier paper’ that under this restriction success rates higher than

50% are obtainable.

1See A. WaLp, Annals of Math. Stat., Vol. 15 (1944), p. 145. Here, both p, (z) and p: (z)
are supposed to be normal distributions with the same covariance matrix. The problem
treated by Wald is different from the one considered in the present paper since in Wald’s
paper the paraméters of the two multivariate normal distributions are assumed to be
unknown.

tR. v. Mises, Annals of Math. Stat., Vol. 14 (1943), p. 238.
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1. Statement of the problem. For each of n classes of individuals a prob-
ability density p,(z), v = 1,2, - - - n,is given. We subdivide the m-dimensional
z-space into n regions R;, R,, - - - R, and assign the region R, to the vth class.
The probability, for an individual of this class, to have its z-value falling in
R,is

M P, = f(n)p.(z)dx, y=1,2 - n

where dX denotes the element of the z-space (dX = dx in the case m = 1).
In the N first trials of the indefinite sequence of trials, N, individuals that
belong to the »th class will be tested. Out of these only those individuals whose
z-value falls in R, will be ascribed to the »th class. "Their number according
to the definition of probability, equals N,(P, + ¢) where ¢, tends towards zero
as N, goes to infinity. The total number of correct decisions during the N first
trials is therefore

(2 NiPy + &) + No(P: + &) -+ Nu(Pn + €)

and the relative number is
@) Vet +M@ o+ Y@t

If N increases indefinitely a part of the N, must become infinite. For these
classes, ¢ converges toward zero. For the other classes N,/N diminishes to
zero. Thus, the relative number of right decisions converges towards

@) 5 NPy + NiPy o+ -« NuPa),

The N, are unknown. Every one of these unknowns can take each value from
zero to N. If P, is the smallest P,, the most unfavorable case, where the
expression (3) has its smallest value, will occur with N, = N, all other N, being
zero. This value is obviously P,. Thus it is seen that the frequency of correct
assignments is at least equal to the smallest P, which may be written as P .
The greatest risk of making a false decision is 1 — Pin .

Now the problem to be solved in the present paper can be stated as follows:
For n given densities p,(x), find the subdivision of the x-space into n regions R,
that gives to the smallest of the expressions P, defined in (1) its possibly greatest
value.

This problem has the type of a continuous variation problem with the integrals
in question bounded within the limits zero to one. We may, therefore, assume
that under reasonable restrictions for p,(z) a solution exists. Uniqueness of
the solution cannot be expected in general. It seems very difficult to establish
the conditions for unicity in other than the most simple cases. Existence of
more than one solution would mean that each of them is an optimum with
respect to infinitesimal modifications of the boundaries.
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2. General solution. A simple problem of variation is considered as solved
in principle when the nature of the extremals is known. In our case of a so-
called minimax problem, where the minimum of n» quantities is maximized, an
additional relation between the n integrals is required. Both can easily be
found in the actual case.

Let us first consider a partition of the z-space into » regions with not all P,
being equal. The smallest P, will be called Ppin and the smallest but one P*.
Among the k regions for which P, = P, there will be at least one, say, R, that
has a common border with a region Rz whose P-value is greater, so that Pg =
P*. Now modify the boundary between R, and R in such a way that the space
covered by R, is increased and that of Rs decreased. According to (1) the new
values of P, and Pg will be

) P.=P,+ 4, Py=Ps— &

with both A and A’ positive. The two quantities A and A’ are not independent
of one another, but they can be chosen both smaller than any given positive
number e. Therefore, the condition

(5) P, =P.,+A<Ps— A =P

can be fulfilled. All other P,-values remain unchanged.

In the case k = 1, that is, if only one region R, had originally the minimum
P-value, the modified system has a greater minimum P, which equals either
P, 4 Aor P*. Ifk > 1 the new system has the same minimum P as the original
one, but its k-value is diminished by one. If we repeat the same procedure
(k — 1) times we obtain a system of regions with one single P, having the mini-
mum P-value and the next step leads to a partition of the z-space into n regions
with a smallest P-value that is greater than the original Pyi,. Thus it is seen
that no partition with unequal P,-values can solve our problem.

Secondly, if m > 1, consider a system of n regions withP = Py = Py = .-- =
P, . Take two points, 2 and y, on the border of any two neighboring regions
R, and R, . An infinitesimal variation of the boundary would consist of adding
to R, in the neighborhood of the point z a space element 48 subtracting it from
R, and, at the same time, adding to R, in the vicinity of y an element 6’ sub-
tracting it from B, . Then, according to (1), the new values of P, and P, will be

(6) P, = P + p/(2)s8 — p,(y)38’

P; = P — p,(2)88 + p.(y)8S'.
Introducing A, = P, — P and A, = P, — P, these equations solved for 58 and
88’ give

_ WA + p)A, r _ Pr(@)As + pu()A,
7) S = . 5 , oY= " - L

where

(7 D = p,(x)p.(y) — pu(x)Ds(¥).
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If the determinant D is positive, we find two positive quantities 6 and 88’
for any pair of positive A, and A, . If D is negative the same is true when x and
y are interchanged. In both cases, that is, with D 5 0, the original partition is
replaced by a new system of regions in which only two regions, R, and R, , have
increased P-values, while (if n > 2) still Pnin = P. If to this system the pro-
cedure as described in the foregoing is applied, a final partition with a greater
minimum value of P can be derived. The conclusion is that no solution of our
problem can include a boundary on which the determinant D is different from
zero for any two points z and y. On the other hand, it is seen that D = 0 means
that the ratio p,(r):p,(x) has a constant value along the border. Thus the
result is reached:

The partition of the z-space that solves our problem is characterized by two proper-
ties: (1) for all n regions R, the value of P, is the same; (2) along the border between
R, and R, the ratio p,(x)/p.(x) is constant.

In the one-dimensional case (m = 1) only the first of these two statements is
relevant. In any case, the success rate, that is, the guaranteed ratio of correct
decisions, equals the common value of all P,.

8. Illustrations. (a) One-dimensional case. Upon introducing the cumula-
tive distribution functions

® o) = [ p@e
the conditions P, = P; = --- P, take the form
(9) Fl(xl) = Fz(xz) - Fz(xl) = e = Fn—l(xn—l) - Fn—l(xn—Z) =1- Fn(xn-—l)

where 1, 22, * + - To—1 determine the n intervals on the both-sides infinite z-axis-
If all density functions have the same form except for an affine transformation
one has

(10) Fv(x) = F[hv(x - 0:)]’ vV = Al) 2,---n

Let us assume, for instance, that scores between 0 and 100 are attributed to
three types of individuals. The first type may have an even chance to obtain a
score between 0 and 50, the second between 40 and 80 and the third between
70 and 100. Here

1
(11) F(z) =3+ (@ —%)p, |z—9|= 3,
with 8, = 25, 60, 85 and p, = %, <o, 3%- The conditions (9) supply
1, xn—25 _ 1 _ _1_=»-—-85

and this, solved for z;, z, gives ;1 = 41 %, z, = 75 while the three expressions
(12) take the value 0.833. Therefore, in attributing all scores below 413 to the
first class and all scores beyond 75 to the third one is safe to make under no
circumstances more than £ incorrect decisions in the long run.
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In the example quoted in the introduction one has

(1_"1)2/2’2

1
(13) pv(x) = 0’,‘\/—271' e
with ¢, = 75, 50, 25 and o) = 8, 32, 72. If ®(x) denotes the integral

&(z) = Ve f e dz

the conditions (9) become

(14) 1 + q»("‘ 1—225) =.q,(x2 —8 50) _ q)(xl ; 50) - q)<x2 Z 75).

The first and last expression equated lead to z; + 3z. = 250. The complete
solution can be found with the help of tables for . It is z; = 29.9920, z, =
70.0027 with the common value twice 0.961 for the three expressions (14).
Hence the result as quoted in the introduction.

Let us now take up the case of six normal distributions with equidistant
mean values ¢ = =ta, +3a, 4-5a¢ and one and the same variance ¢*. Then,
because of symmetry, two equations only have to be fulfilled:

. Q(x, j_/ 25a> cp(x: :r/ §a> ~ q)(x; :L/ ga) _ q,(;“/?) (x; \4;;)

For ¢*/a’ = 0.32, the numerical solution gives
z; = —4.160a, xy = —2.062a.

The success rate, i.e. half the common value of the above expressions is 0.931.
The six intervals extend from — « to x;, from z; to x,, from z; to 0, from 0 to
—x; , from —z, to —x;, and from —x; to .

(b) Case of more than one dimension. Let us assume that two classes A and
B have uniform distributions extending over volumes V, = 1/p,and V, = 1/p.
respectively. If the two regions have a common part of volume V each surface
within the common space fulfills the condition p:/p; = constant. Thus, the
two regions R; and R, are not uniquely determined but subject to one condition
only which determines the optimum success rate. If ¥V is cut out from V, and
(1 — «)V from V., the relation must be fulfilled:

nV
P+ D2

1= Vk=1—1pV(1 — «), i.e. Kk =
and the success rate is

-1 - PPV —
S=1 P1 Vi 1 m =1 P2 V(l K).
If three classes A, B, and C are considered with the densities p, = 1/V1, ps =
1/V,, ps = 1/V3and the first two regions have a space of volume V in common,
the latter two a space of volume V’, the conditions are

1—pVA — ) =1—p(cV 4+ AV) =1 — pg(1 — NV’
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which supply
4 P2 + p3 V+v
P+ peps+psp0 VO
D1P2Ds3 V4V

MmP:+ P23+ s v’
and the success rate has the value

S=1-(V+V PibePa :
V+ )pxpz+pzpa+psp1

If the p, are normal density funections, say

p@y) = YD,

Q=0 (@ — av)z +26 @ —a)y —b)+ v (y — bv)2

and D, the corresponding determinants, the curves separating the regions R,
are the conics

@, — Q, = const.

where the constants are determined by the conditions that all P, must be equal-
If the «, 8, ¥ have the same values for every », the borders consist of straight
lines. In this case one can reduce the expressions for p, , by an affine transforma-
tion, to

—(z—a,)2—(y—b,)2

1
p”(xr y) = -
™

In the transformed plane the borderline between the regions R, and R, is per-
pendicular to the straight line that connects the points 4,(a,, b,) and A,(a, ,
b,). If all points A, lie on the same straight line (in particular, if » = 2) the
whole problem is practically identical with the one-dimensional (m = 1). In
the case n = 3, in general, the three regions are confined by three lines per-
pendicular to 414;, 4245, A3A, passing through a point C whose coordinates
are determined by the equations P, = P, = P;. If r, denotes the distance
4,C and ¢,, 9, are the angles, A, C' forms with the adjacent sides of the triangle
A14,4; one has to use the function

1 00
Fr,o) = m /‘; é(r — 2z tan p)e ' dz.

Then the two conditions for C read
F(TI,SOI) + F(Tl:ﬂl) = F(Tg,(p2) + F('I'z,t?z) = F(T3,<p3) + F(73,03)

and the success rate equals 0.5 plus the common value of these three expressions.



