SAMPLING INSPECTION PLANS FOR CONTINUOUS PRODUCTION
WHICH INSURE A PRESCRIBED LIMIT ON THE OUTGOING QUALITY
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1. Introduction. This paper discusses several plans for sampling inspection of
manufactured articles which are produced by a continuous production process,
the plans being designed to insure that the long-run proportion of defectives
shall not exceed a prescribed limit. The plans are applicable to articles which
can be classified as “defective” or “non-defective” and which are submitted for
inspection either continuously or in lots. In Section 2 the notions of “average
outgoing quality limit”’ and “local stability”” are discussed. The valuable con-
cept of average outgoing quality limit for lot inspection is due to Dodge and
Romig [4], and that for inspection of continuous production to Dodge [1]. Sec-
tion 3 contains a description of a simple inspection plan (SPA) applicable to
to continuous production and a proof that the plan will insure a prescribed
average outgoing quality limit. Section 4 contains a proof that this inspection
plan also has the important property that it requires minimum inspection when
the production process is in statistical control. In Section 5 is contained the
description of a general class of plans which possess both these important proper-
ties.

The problem of adapting SPA to the case when the articles are submitted for
inspection in lots instead of continuously, is treated in Section 6. Some methods
of achieving local stability are discussed in Section 7 and a specific plan is devel-
oped there. Finally Section 8 discusses the relationship between the present
work and that of the earlier and very interesting paper of H. F. Dodge [1],
mentioned above. :

If a quick first reading is desired the reader may omit the second half of Section
3 (which contains a proof of the fact that SPA guarantees the prescribed average
outgoing quality limit) and the entire Section 4 except for its title (the proof of
the statement made in the title of Section 4 occupies the whole section).

2. Fundamental notions. In this paper we shall deal only with a product
whose units can be classified as ‘“defective” or ‘“non-defective.” We shall
assume that the units of the product are submitted for inspection continuously,
except in Section 6, where we assume that they are submitted in lots. Through-
out the paper we shall assume that the inspection process is non-destructive,
that it invariably classifies correctly the units examined, and that defective units,
when found, are replaced by non-defectives. By the “quality” of a sequence of
units is meant the proportion of defectives in the sequence as produced. By the
“outgoing quality’’ (OQ) of a sequence is meant the proportion of defectives
after whatever inspection scheme which is in use has been applied. If this
scheme involves random sampling, then in general the OQ is a chance variable.
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(It depends on the variations of random sampling.) If the OQ converges to
a constant p, with probability one as the number of units produced increases
indefinitely, p, is called the “average outgoing quality” (AOQ). The AOQ
when it exists is therefore the average quality, in the long run, of the production
process after inspection. It is a function of both the production process and the
inspection scheme. These definitions are due to Dodge [1].

The “average outgoing quality limit” (AOQL) is a number which is to depend
only on the inspection scheme and not at all on the production process. Roughly
speaking, it is a number, characteristic of an inspection scheme, such that no
matter what the variations or eccentricities of the production process, the AOQ
never exceeds it. For the purposes of this paper we shall need the following
precise definition: Let c; be zero or one according as the ith unit of the product,
before application of the inspection scheme, is a non-defective or a defective,
respectively. Let d; have a similar definition after application of the inspection
scheme. (We note that if the sth item was inspected, then d; = 0; if the ith
item was not inspected, then ¢; = d;.) The sequencec = ¢;,¢C2, +-,¢n, ",
ad inf. characterizes the production process'. The elementsof d = dy,ds, - - -,
ad inf. are in general chance variables. The number L is called the AOQL if it
is the smallest’ number with the property that the probability is zero that

N
2 di
. ]
thsup N > L,

no matter what the sequence c.

It should be noted that this definition of AOQL places no restrictions whatever
on the production process, since all sequences ¢ are admitted. It is too much
to expect a production process to remain always in control; indeed, doubt as to
whether statistical control always exists may cause a manufacturer to institute
an inspection scheme. The inspection schemes which we shall give below will
yield a specified AOQL no matter what the variations in production are. If
these schemes are employed, then, even if Maxwell’s demon of gas theory fame
were to transfer his activities to the production process, he would be unsuccessful
in an effort to cause the AOQL to be exceeded. A dishonest manufacturer might
sometimes essay to do this. If we imposed restrictions on the sequence ¢ and

1 This use of an infinite sequence to describe the production process deserves a few words.
What we consider in this paper are schemes applicable when the number of units produced
is large and operate mathematically as if the production sequence were of infinite length.
Naturally the latter is never the case in actuality. However, the larger the number of
units produced the more nearly will the reality conform to the results derived from the
mathematical model. While the present definition uses explicitly the notion of an infinite
sequence, such a commonplace statement as ‘‘the probability is 1/2 that a coin will fall
heads up’’ uses this notion implicitly. It is alsoimplicitinthe intuitive meaning we ascribe
to such a word as ‘‘average,” which is in every day use.

2 It is not difficult to see that such a number always exists, for it is the lower bound of a
set which is non-empty (it contains the point one), bounded from below (zero is a lower
bound), and closed.
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determined the AOQL on that basis, we would run the danger that the relative
frequency of defects in the sequence of outgoing units might exceed the AOQL if
it happened that the actual sequence ¢ did not satisfy the restrictions imposed.
After we discuss below various possible sampling inspection plans which
insure that the AOQL does not exceed a predetermined value L, it will be seen
that for any given L > 0 there are many sampling inspection schemes which do
this. To choose a particular sampling plan from among them the following
considerations may be advanced: If two inspection plans S and S’ both insure
the inequality AOQL < L and if for any sequence ¢ the average number of
inspections required by S is not greater than that required by S’ and if for some
sequences ¢ the average number of inspections required by 8 is actually smaller
than that required by ', then S may be considered, in general, a better inspec-
tion plan than §’. However, the amount of inspection required by a sampling
plan is not always the only criterion for the selection of a proper sampling
scheme. There may be also other features of a sampling plan which make it
more or less desirable. We shall mention here one such feature, called “local
stability,”” which will play a role in our discussions later. Consider the sequence
d obtained from the sequence ¢ by applying a sampling inspection scheme. Even
if the AOQL does not exceed L, it may still happen that there will be many large
segments of the sequence d within which the relative frequency of ones is con-
siderably higher than L. For instance, it may happen that in the segment
(di, ---,ds) the relative frequency of ones is equal to $L, in the segment
(dm41, * -+, dem) the relative frequency is equal to 3L, in the segment (dam1,
-+« , dsm) the relative frequency is again equal to $L, and this is followed again
by a segment of m elements where the relative frequency of ones is equal to 3L,
and so forth. If m is large, such a sequence d is not very desirable, since each
second segment, will contain too many defects. A sequence d is said to be not
locally stable if there exists a large fixed integer m such that the relative frequency
of ones in (dk41, * - - , deym) i8 considerably greater than L for many integral
values k. On the other hand, the sequence d is said to be locally stable if for
any large m the relative frequency of ones in (diy1, - - - , dksm) is not substan-
tially above L for nearly all integral values k. This is clearly not a precise
definition of “local stability,” but merely an intuitive indication of what we want
to understand by the term, since we did not define what we mean by “large m,”
“many values of k,” ‘“considerably above L,” etc. A precise definition of local
stability will not be needed in this paper, since it is not our intention to develop
a complete theory for the choice of the sampling plan. The idea of local stability
will be used in this paper merely for making it plausible that some schemes we
shall consider behave reasonably in this respect. A similar idea, called “protec-
tion against spotty quality,” is discussed by Dodge [1]. A possible precise defini-
tion of logﬂ stability could be given in terms of the frequency with which F(N) =
1 Y~ di (k being fixed) lies within given limits.
k+1) &
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3. A sampling inspection plan which insures a given AOQL no matter what
the variations in the production process. The only feature of the sampling
(inspection) plan (SP) studied in this section and hereafter referred to as SPA
which we shall consider here is that it insures the achievement of a specified
AOQL. Considerations leading to a choice among several schemes are postponed
to later sections.

For convenience, let f be the reciprocal of a positive integer. SPA calls for
alternating partial inspection and complete inspection. Partial inspection
is performed by inspecting one element chosen at random from each of successive

groups of }.1- elements. Complete inspection means the inspection of every

element in the order of production. SPA is completely defined when a rule
is given for ending one kind of inspection and beginning the other.

It is clear that all SP need not be of the above class. Thus, for example, a
scheme might consist of partial inspection with various f’s employed in various
sequences. We make no attempt in this paper to examine all possible schemes.
For simplicity in practical operation, alternation of complete inspection and
partial inspection with fixed f would seem reasonable. The Dodge scheme [1]
is of this type.

We shall also not discuss the question of a choice of the constant f, but will
assume that a particular value has been chosen for various reasons and is a datum
of our problem. Reasons which might influence a manufacturer in his choice
of f could be contract specifications which impose a minimum on the amount of
inspection, or psychological grounds to the same effect. The manufacturer
may desire a certain minimum amount of inspection in order to detect mal-
functioning of his production process. Also f controls local stability to some
extent. The consequences of a choice of f as they appear in the theory below
may also play a role.

Returning to SPA, we begin with partial inspection. Let L be the specified

1
AOQL. Denote by ky the number of groups of }- units in which defectives

were found as the result of partial inspection from the beginning of production
through the Nth unit. SPA is as follows:

(a) Begin with partial inspection.

(b) Begin full inspection whenever

G-y,

ey = N
(¢) Resume partial inspection when
en S L.

(d) Repeat the procedure. (It will be recalled that defective units, when
found, are always to be replaced with non-defectives.)
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It is to be observed that in this plan the number of partial inspections increases
without limit. For, while complete inspection is going on, the value of ky
remains constant, so that after a long enough period of complete inspection the
denominator N of the expression which defines ey will have increased sufficiently
for ey to be not greater than L. On the other hand, complete inspection may
never occur. This will be the case if, for example, no defectives or very few

defectives are produced.
We shall now show that the AOQL of the above SP is L. We first note that,

1
G-1)
at N, ey can increase only by J"]\T—' Hence, for sufficiently large N, ey <

L + ¢, where ¢ > 0 may be arbitrarily small.
Suppose now that the production process is subject to any variations whatso-

ever, i.e., the sequence
¢C=2¢,C, *,Cy, ,ad inf.

is any arbitrary sequence whatever (by their definition the ¢; are all zero or one).
Our result is therefore proved if we show that, with probability one,

N
3.1) lim (e,, - Lls d.-) =0
Nooo N
for this arbitrary ¢, and that for at least one ¢
3.2) lim ey = L.
N—c0
1

Let S(N) be the number of groups of 7 units which have been partially in-

spected through the Nth unit. Define z; as zero if in the sth partially inspected
group a non-defective was found and as one if a defective was found. We have

S(N)

ky = z Z;.

tm]
Since the number of times partial inspection takes place increases indefinitely,
S(N) > © as N > . Also S(N) < fN < N. Let a; be the serial number
of the last unit in the jth partially inspected group. Then for all j the expected
value E(z;) of z; is given by

E@x) =f ( i c;).

i (@ j—(1/1)+1)

We have, for all j

aj

3.3) .--(a,g;//)ﬂ) = d) = 2

so that
E([l—l]x,.— X; d.-)=0.
f ai—(TTN+1
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Also from (3.3) it follows, since z; is the value of a binomial chance variable
from a population of fixed number (;) , that there exists a positive constant 8
such that

3.4) o ([1 - 1] - 3 d,«) <8
f a;=TN+1

where o’(z) is the variance of a chance variable 2. Now a theorem of Kolmo-
goroff (Kolmogoroff [2], Fréchet [3], p. 254) states:
A sequence of chance variables with zero means and variances oy, o8, -
converges with probability one towards zero in the sense of Césaro if

0 a_%
e

3.5)

converges. The inequality (3.4) permits us to apply this theorem to the se-
quence of chance variables of which the jth (j = 1, 2, --- ad inf.) is

Gl B

21
since the series 2, 3 is well known to be convergent. We therefore obtain that,
t=1

with probability one,

1 S(N) N
L ) IR

oun, S(V) =lm e —w & d‘) =0
since the units which are fully inspected contribute nothing to Zd;. Since
S(N) < N, the desired result (3.1) is a fortiori true.

If ¢ is such that all the c; are one, it is readily seen that (3.2) holds. If many
(this adjective can be precisely defined) defectives are produced, this will also
be the case. This completes the proof of the fact that the AOQL of SPA is L
no matter how capriciously the production process may vary.

t=1

4. When the production process is in statistical control, SPA requires minimum
inspection. The production process is said to be in statistical control if there
is a positive constant p < 1 such that, for every 7, the probability that ¢; = 1
is p and is independent of the values taken by the other ¢’s. We shall see that
if the process is in statistical control and if SPA is applied to it, the specified
AOQL is guaranteed with a minimum amount of inspection.

The number of units inspected through the Nth unit produced is

@.1) IN) =N — G - I)S(N).

If the process is in statistical control we have, with probability one,
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N
26
. ==l —
(42) im = =r

by the strong law of large numbers. Shortly we shall prove the existence of a
constant L* such that, with probability one,

N

2 d

: fml — T *

(4.3) }’1_510 ~ L*,
Assume for the moment that this is so. Since it is only by inspection that de-
fectives are removed, and the units selected for inspection are in statistical con-
trol like the original sequence, it follows that, with probability one,

M) _lg_mm=1-L
> LY =1 »

(44) Iim =5

because, with probability one,

N

Z:l (e — dy)

m =

Inspection is therefore at a minimum when L* is at a maximum compatible
with the specified AOQL. By (4.3) the latter means that
(4.5) L* < L.
SPA has been shown to guarantee this requirement. The optimum situation
from the point of view of the amount of inspection would therefore be to have
L* = L, but this cannot always be achieved. The absolute minimum amount
of inspection clearly is f, i.e., partial inspection exclusively. Consequently
from (4.4)

=p — L*

so that
(4.6) L* < p(@ = f).

Combining (4.5) and (4.6) we see that we have to consider three cases:
Case a. If

- p> L
we have to show that
(4.8) L =L~
Case b. If
L
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we have to show, by (4.4), that

L*
1—-—==7F,
» J
that is,
(4.10) L* = p1 - f).
Casec. If
L

we have to show that
(4.12) L =L*=p(1 - f).

Proor of (4.8): We have already remarked in Section 3 that in SPA partial
inspection always recurs, but complete inspection need never occur. We shall
show in a moment that (4.7) implies that no matter how large an integer v
is chosen, the probability of temporarily stopping partial inspection for some
N > v is one. Assume that this is so. Choose an arbitrarily small positive

1
e, and let v > —f—-e—i) . For a sequence where complete and partial inspection
alternate infinitely many times let
A = a, a,---, ad inf.
be the sequence of integers at which partial inspection ends, and let
B = B,B:, -, ad inf.
be the sequence of integers at which complete inspection ends. Then, for all j,
a1 > B > aj.

From the description of SPA it follows that, for all N > v which belong to either
A or B,

(4.13) lev — L| < e
In Section 3 we proved
N
@.1) lim (ev — =3 d.-) =0
N+ Nl'-l

with probability one. Since ¢ is arbitrarily small it follows that, with probability
one,

(4.14) lim

N—
(N in A or B)
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To complete the proof of (4.8) we have still to show that L* exists and that the
probability is one that complete inspection will occur infinitely many times.
First we prove that L* exists.

N
As N increases during an interval of complete inspection, D(N) = Y. d;
=1
D(N)

remains constant. Hence -~ decreases monotonically. Since for the ends

of such intervals (4.14) holds, it follows that (4.14) holds as N — « and is a
member of A, B, or an interval (e;, 8;) for all j.

Let N — « while always being in the interior of an interval (8;, w41, j =
1,2, .-, ad inf., which contains a;,; but not 8;. Let N* be the total number
of units in these intervals through the Nth unit produced. Let N; ::nd N; be
such that

Bi = N1 < Ny < aj.
Then
: — Ni = N: — N,

Since the production process is in statistical control, we have, by the strong
law of large numbers,

D(N)

=p(l —-f)=7p

with probability one. Let 8* be the general designation for numbers <e in
absolute value, so that all §* are not the same. With probability one for almost
all N, we have by (4.15)

(4.15)

N—co

D(Ny)

Ny =PEE
I%J?) =p" + &
Write
[D(N2) — D(NY)] _ K
(N2 — Ny) '
Now
D(Nz) D(Nl) + [D(Nz) - D(Nl)] DNy + [D(Nz) — D(Ny)]
Ny T + (N —N) T N+ N.—N)
(' + s*)N, + KWN: — Ny -
= Nf + (N: — N)) P :
Hence

(4.16) K(N: — Ny) = 28*N7 + (' + 8% (N; — Ny).
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Now suppose (4.3) does not hald. From the definition of AOQL it follows that
for some 7 > e there exist sequences (whose totality has a positive probability)
so that, for infinitely many N, we have

D(N») _ D(Ny) + [D(NV2) — D(Vy)]

4.17 < L — 4.
(4.17) N: Ny + (N2 — Ny) 7
For large enough N, from (4.14),

D(Nl) — %

with probability one and hence, using (4.16) in (4.17)
Ny(L + &) + 28*NT + @ + (N2 — Ny
< LN, + L(N: — N1 — 42N,
from which, using the fact that p’ > L (from (4.7)), we get
(4.19) Ni$* + 2N16* + 6*(N; — Ny) < —4qN,.

((4.18) and (4.19) hold for the sequences for which (4.17) holds, except perhaps
on a set of sequences whose probability is zero.) Since Nf < Nyand |6*| < n,
we have, on the other hand,

Ni8* + 2NT6* + 6*(N2 — N1) > —39N: — 9(N: — N))
> —49N; — 49(N; — Ny) = —4n9N,

(4.18)

(4.20)

which contradicts (4.19) and proves the desired result ((4.3) and (4.8)), except
that it remains to prove that, no matter how large v, the probability of tempo-
rarily stopping partial inspection at some N > v is one. Let vy > v be some
integer at which partial inspection is going on. From (4.2) and (4.7) it would
follow, if partial inspection never ceased on a set of sequences with positive
probability, that, on this set, with conditional probability one, for N sufficiently
large and e sufficiently small,

ke — ky, L €
JN—w =7t e
N k@ -9

N IV >L+ Q1 fe
eN>LN;‘yo+(N_'Y(}27(1 _j)é’

6N>L+(l ;f)e.

This contradiction proves that complete inspection is eventually resumed and
completes the proof of minimum inspection in Case a.
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Proor of (4.10): We shall prove that (4.9) implies that, with probability one,
complete inspection will cease, never to be resumed. For, from (4.15) and
(4.9) it follows that for N sufficiently large and e sufficiently small,

@21) DA(,JX) —p 4 o* <L — 2
Hence, a fortiori,
(4.22) % <L -2

((4.21) and (4.22) hold with probability one.)
(3.1) states that, with probability one,

]},iir:o(eu - Q%*m) = 0.

Hence for all N sufficiently large, with probability one,
ey < L — €,

i.e., with probability one complete inspection is never resumed.
When (4.9) holds, therefore, with probability one and with a finite number of
exceptions SPA will require only partial inspection.

Proor of (4.12): If p =

and complete inspection finally never resumes,

1-f
L
then (4.12) follows easily. If p = i—7

alternate infinitely many times, then the proof is similar to that of (4.8) and is
therefore omitted. In either case the desired result follows.

and partial and complete inspection

b. A class of SP all of which insure both a given AOQL and minimum inspec-
tion. Let the definition of SPA be modified in the following particulars:
(b) Begin full inspection whenever

kN(-l- — 1)
= NS p 4.
N

(¢) Resume partial inspection when
ev < L — y(N).
Let ¢(N) and ¢(N) be such that
—¥(V) < o(N)
lim ¢(N) = lim ¢(N) = 0.
N—roo N~—*w

en

(SPA corresponds to the case ¢(N) = ¢(N) = 0.) Then all the SP of this class
have the property that the AOQL is L and that inspection is at a minimum in
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the sense of Section 4. The proofs are essentially the same as those for SPA
and hence will be omitted.

6. The inspection plans of Section 5 can also be applied to lot inspection.
We shall carry on the discussion of this section in terms of SPA, but the results
apply to all the members of the class of plans described in Section 5. We shall
show that SPA can also be applied when the product is submitted for inspection
in lots. Although we assumed previously that the units of the product are
arranged in order of production, the results obtained for SPA remain valid for
any arbitrary arrangement of the units. If the product is submitted in lots we
may arrange the units as follows: Let I, I, - - - , etc. be the successive lots in
the order of their submission for inspection. Within each lot we consider the
units arranged in the order in which they are chosen for inspection. In this way
we have arranged all units in an ordered sequence and the inspection can be
applied as described before. Thus, we start with partial inspection, i.e., we

1
take out groups of - elements in [; and inspect one unit (selected at.random)

from each of these groups. When ey > L, we start complete inspection and
revert to partial inspection as soon as ey < L. When the units in [; are used
up in the process of inspection, we continue, using the units of I, , etc.

1
If it is found inconvenient to take out a group of }units and then to select
one unit for inspection, we could modify the sampling inspection plan as follows:
. 1 . .
Instead of taking out a group of }. units and then selecting at random one unit

from it, we select at random one unit from the uninspected part of the lot and
look upon this unit as the unit selected at random from a hypothetical group of

1 .
j: units. Thus we can proceed exactly as before,.except that we have to keep in

mind that with each unit inspected under ‘‘partial inspection’ we have used

1 1
up another set of = — 1 units. Thus, as soon as (} - 1) times the number of

S

units inspected under ‘““partial inspection’ becomes equal to or greater than the
number of units in the uninspected part of the lot, the inspection of that lot is
already terminated, and we have to start using the units of the next lot. The
inconvenience caused by the necessity of keeping track of the number of units
inspected under “partial inspection’” and of the number of units in the unin-
spected part of the lot can be eliminated by further modifying the inspection
plan as follows: Instead of beginning complete inspection as soon as ey > L,
we continue ‘‘partial inspection” until Ey = ey — L is so large that complete
inspection of all the units of the lot not yet used up has to be made in order to
bring ey down to L at the end of the lot. This leads to the following sampling
procedure, to be known as SPB: Let N, be the number of units in the lot, let
N, be the serial number of the last unit in the preceding lot, and let E(N,) =
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N Ey, = Ni(ex, — L) be the “excess” carried over from the preceding lot.
For simplicity assume that the following are all integers:

LNO=M

M s

1—f‘M

fNo = N*
and

JENL) _ 54

1_——f_E.

The inspection procedure is then as follows: Inspect successive units drawn at

random until either
(a) M* — E* defectives have been found in the first N’ < N* units inspected.

7
In this case inspect further an additional Ny — Vv units and this terminates the

i

inspection of the lot. The excess to be carried over to the next lot is then zero.
Or
(b) N* units have been inspected and the number of defectives found is H <
M* — E*. In this case the inspection of the lot is terminated and the present

negative excess

a-=59n
J

is carried over to the next lot. (The serial number of the last element in the
present lot is N, + N, and

E(N.+ No) = [H — (M* — E¥)]

a-1

NLGNL"I"H f

C(Np+Ng) = N, ¥ No

Hence the present excess is

(NL + No)[e(NL.Hvo) - L] = NLeNL + H (lf;f) - L]VL - LNo

= NL(GNL - L) + H

a-=5_
7 M

- (lf;f) [H — M* + E¥,

as given above.)
We note an important property of SPB: The excess carried over from a pre-

ceding lot is never positive.
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7. Possible modifications of the SP to achieve local stability. Although
the sampling plans discussed in previous sections are optimum in the sense that
they guarantee the desired AOQL with a minimum of inspection when the
production process is in statistical control, they do not always behave very
favorably as far as local stability is concerned. To make this point clear,
consider the following example: Suppose that during a very long initial time
period the production process functions very well and the relative frequency
of defectives produced is well below L. Thus, applying SPA, say, ey — L will
be considerably less than zero at the end of this period. Now suppose that then
the production process suddenly deteriorates and the number of defectives
produced during the next period of time is considerably higher than L. In spite
of that, complete inspection will not begin for quite some time because ey became
so small during the initial period. Thus there will be a long segment in the se-
quence of outgoing units within which the relative frequency of defectives will
be larger than the prescribed AOQL. Of course, this segment will be counter-
balanced by other segments where the relative frequency of defectives will be
below the AOQL, so that the AOQL will not be violated. Nevertheless, the
occurrence of long segments with too many defectives, i.e., a lack of local sta-
bility, is not desirable.

It should be noted that, even though SPA was not designed to achieve con-
siderable local stability, drastic lack of local stability cannot occur when the
production process is in statistical control and SPA is employed. In the example
given above where the outgoing quality was not locally stable, it was assumed
that there were variations in the production process. The existence of statistical
control acts as an important stabilizing factor on the quality.

In this section we want to discuss several possible modifications of SPA which
will insure a greater degree of local stability. One such modification is the
following: We choose a positive constant A and we define the excess Ex for each
value N as follows: E*(N) is equal to the excess E(N) as originally defined
(= N[ex — L]) as long as for all N' < N, E(N') > —A. The dif-
ference E¥(N + 1) — E*¥(N) = E(N + 1) — E(N) for all N for
which EN + 1) — E(N) > 0. fE(N + 1) — E(N) <0, then E¥(N + 1) =
max [E¥(N) + {E(N + 1) — E(N)}, —A]. In other words, with this modifica-
tion of the sampling inspection plan we set a lower bound — A for the excess.
When the excess is positive we begin complete inspection, and revert to partial
inspection when the excess becomes non-positive. The effect of this is that, if
the proportion of defectives produced becomes large, complete inspection will
not be delayed very long, although the proportion of defectives produced in the
preceding period may have been considerably below L. It is clear that this
modification of SPA does not increase the AOQL. However, the amount of
inspection will be somewhat increased, especially when the quality of the product
is less than or only slightly greater than L. If the constant A is large, the in-
crease in the amount of inspection is only slight, but also the degree of local
stability achieved is not very high. On the other hand, if A is small, the increase
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in the amount of inspection may be considerable, but a high degree of local
stability is achieved. Thus, the choice of A should be made so that a proper
balance between local stahility and amount of inspection is achieved.
Modifying SPA by setting a lower limit for the excess has the disadvantage
that the mathematical treatment of this case is involved. We shall, therefore,
consider another modification of the inspection plan which will have largely the
same effect, but whose mathematical treatment appears to be much simpler. A
fixed positive integer N, is chosen and the inspection scheme is designed so that.
Ey, < Ois assured. If Ey, is negative, we replace it by zero. In other words,
no excess is carried over from the first segment of N, units to the next segment of
Nounits. Thus, the second segment of N, units is treated exactly the same way
as if it were the first segment, and this is repeated for each consecutive segment.
of Ny units. This modification of SPA (the resulting plan is to be known as
SPC) has essentially the same effect as setting a lower bound for the excess.
Again it is clear that by this modification the AOQL is not increased, but the
amount of inspection may be increased. The latter is particularly true when
N, is small, which corresponds to very high local stability requirements. More
efficient plans than SPC can probably be devised for this situation.
Undoubtedly, there are many other possible modifications of the inspection
plan by which a greater degree of local stability can be achieved at the price of
somewhat increased inspection. It is not the purpose of this paper to enumerate
all these possibilities or to develop a theory as to which of them may be con-
sidered an optimum procedure. We shall restrict ourselves to a discussion of the
mathematical consequences of SPC. First we define it precisely. If it is to be
applied to inspection of lots of size N, then SPC is simply SPB with E(N,)
and E* always zero. When applied to continuous production it will operate

as follows: Assume for convenience that M = LN,, N* = fN,, and J. Z_‘_l 7 = M¥*

1
are all integers.

(a) Begin each segment of N, units with partial inspection, i.e., inspect one
unit chosen at random from each successive group of 1 units. Continue partial

J
inspection until one of the following events occurs: either
(b) M* defectives are found. In this case begin complete inspection with the
first unit which follows the group in which the last of the M* defectives was
found and continue until the end of the segment of N, units.
or

(b") N* groups of ;—, units are partially inspected.

(c) Repeat with the next segment of N units.

Comparison with SPB shows that, in SPC, if (b) occurs earlier or at the same
time as (b’), then Ey, = 0, while if (b’) occurs before (b) we have Ex, < 0.
In contradistinction to SPB, in SPC there is no carrying over of the excess.

Let us determine the AOQ for SPC when the production process is in a state



SAMPLING INSPECTION PLANS 45
of statistical control. Denote by p the probability that a unit produced will be

defective. Let the chance variable H denote the number of defectives found
during partial inspection. The probability that H = ¢ < M* is

(]:r*) ' — p)™.
i

H < M* always. We have, when H =

BNy = L=7% _ N,

i)
and hence
Noeuo = (1 ;f)z.
The AOQ is therefore a f;’ f) multiplied by the expected value of H and is
0
therefore

2 [ - E o - z)( Vo'a - p]

=0

-1fi- s e - (7)ra - p].

t=0

(7.1)

The reduction from the original quality p to the AOQ was achieved by inspecting
a fraction of units which is 1 times the reduction in the frequency of defectives.

Hence, with probability one, the fraction of units inspected when the production
process is in statistical control is

72 I=1- ;I; 5 (1:’ *) P — )™,

t==0

When p > I_—I—If we see from Section 4 that the third term of the right member
of (7.2) represents the price paid in fraction of inspection above the minimum in

return for the local stability achieved. When p < l——L_—_—- the additional inspec-

)
tion is of course I — f.

As N, becomes larger, SPC becomes more and more like SPA, and conse-
quently the amount of inspection tends to the minimum. As N, becomes
smaller, the degree of local stability achieved becomes higher and must be
paid for by an increasing amount of inspection. An illustrative example will be
given in the next section. It has already been pointed out that the mere exist-
ence of statistical control implies a considerable amount of local stability even
when SPA is applied.
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The only practical difficulty which may arise in evaluating the formulas in
(7.1) and (7.2) might come from attempting to evaluate

Bl L (N*\ —
=% o - (V) -

For those values of the parameters which are likely to occur in application, a
good approximation to 7" (exactly how good we shall not investigate here) is
given by

T= Y (M*—q)

M*—1 e—N'p(N*p)i
i=o 7! ’
A table of T for integral values of M* from 2 to 16 and for integral values of N*p
from 1 to 25 is given below. The computations were performed under the
direction of Mr. Mortimer Spiegelman of the Metropolitan Life Insurance
Company, to whom the authors are deeply obliged.
M*—1 . e_th(N*p),'
Tableof T = Y, (M* — 1) —r

=0

N*p
M* -1

1 2 3 4 5 6 7 8 9 10 11 12
1 1.10f .54 .25 .11} .05{ .02 .01 | .00| .00| .00| .00 | .00
2 2.02 1.22{ .67 .35 .17} .08 .04 | .02| .01 | .00| .00 | .00
3 3.00( 2.08 1.32| .78 .44 .23 .12 .06| .03| .01| .01 | .00
4 4.00f 3.02| 2.13| 1.41; .88 .52 .29 .16 | .08 | .04 | .02| .01
5 5.00] 4.01| 3.05| 2.20| 1.49] .96 .59 | .35| .20 .11 | .06 | .03
6 6.00| 5.00f 4.02| 3.08 2.26| 1.57|1.04| .66 | .41 | .24 | .14 | .08
7 7.00 6.00/ 5.01/ 4.03] 3.12{ 2.31}1.64 | 1.12| .73 | .46 .28 | .17
8 8.00( 7.00{ 6.00{ 5.01] 4.05| 3.16(2.37 | 1.71|1.19| .79 | .51 | .32
9 9.00/ 8.00] 7.00| 6.00| 5.02| 4.08|3.20 | 2.43 | 1.77 | 1.25 | .85 | .56
10 10.00{ 9.00{ 8.00f 7.00{ 6.01] 5.03| 4.10 | 3.24 | 2.48 | 1.83 | 1.31 | .91
1 11.00{ 10.00| 9.00| 8.00{ 7.00| 6.01| 5.05 | 4.13 | 3.28 | 2.53 | 1.89 | 1.37
12 12.00{ 11.00{ 10.00{ 9.00{ 8.00; 7.01| 6.02 | 5.07 | 4.16 | 3.32 | 2.58 | 1.95
13 13.00( 12.00| 11.00| 10.00] 9.00{ 8.00( 7.01 | 6.03 | 5.08 | 4.19 | 3.36 | 2.63
14 14.00( 13.00{ 12.00| 11.00| 10.00{ 9.00| 8.00 | 7.01 | 6.04 | 5.10 | 4.22 | 3.40
15 15.00| 14.00| 13.00] 12.00| 11.00| 10.00{ 9.00 | 8.01 | 7.02 | 6.05 | 5.12 | 4.25

8. The SP of H. F. Dodge. H. F. Dodge [1] has proposed a very interesting
SP for continuous production. The plan is defined by two constants ¢ and f
and may be described as follows: Begin with complete inspection of the units
consecutively as produced and continue such inspection until ¢ units in succes-
sion are found non-defective. Thereafter inspect a fraction f of the units.
Continue partial inspection until a defect is found. Then start complete inspec-
tion again and continue until ¢ units in succession are found non-defective.

Repeat the procedure.
Dodge [1] derived formulas for determining the AOQL corresponding to any
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pair ¢ and f, under the assumption that the production process is in a state of
statistical control. Dodge’s formulas for the AOQL are not necessarily valid
if we do not make this restriction on the production process, i.e., if we admit
that the probability p that a unit will be defective may vary in any arbitrary
way during the production process. This, of course, is not a criticism of the
derivation of the formulas; it cannot be considered surprising that a formula is
not valid under assumptions different from those under which it was derived.
However, it is relevant to point out the fact that the Dodge SP does not guaran-
tee the AOQL under all circumstances, so that care must be taken to ensure that
certain requirements are met. Exactly what these requirements are is not
known; statistical control is a sufficient condition, but is probably not necessary
and could be weakened. It seems likely to the authors that, if p varies only
slowly (with N) with infrequent “jumps,” the Dodge SP will produce results
which will exceed the AOQL by little, if at all. But if the “jumps” are numet-

=y | eNp(N*p)s
—_ *
Table of T = z_‘s (M* — 1) -
(Continued)
N*p
M* -1

13 14 15 16 17 18 19 20 21 22 23 24 25
1 .00 | .00 | .00 .00 .00 | .00 | .00-| .00 | .00].00]|.00]|.00] .00
2 | .00]| .00 | .00 | .00 | .00/ | .00 | .00/| .00 .00{.00/.00]|.00] .00
3 | .00 .00| .00| .00 | .00 | .00 .00 | .00 .00]|.00/|.00 .00 .00-
4 | .01 .00| .00 .00|.00| .c0| .00 | .00 |.00/|.00]|.00]|.00] .00
5 | 02| .01] .00| .00/ .00| .00| .00| .00/ .00/|.00]|.00]|.00] .00
6 | .04 | .02 .01 | .00} .00 | .00| .00| .00].00|.00[.00]|.00] .00
7 | .10 .05| .03 | .02 .01 .00| .00| .00 |.00|.00]|.00]|.00] .00
8 .20 .12 .07 .04 .02 .01 .01 .00 | .OO| .00 | .00 | .00 | .00
9 | .36 | .23 | .14 | .08 | .05 | .03 | .01 | .01 | .00} .00]| .00/ .00 .00
10 | .61 | .40 | .26 | .16 | .10 | .06 | .03 | .02 | .01 | .01 | .00 | .00 | .00
11 97 | .66 | .44 | .29 | .18 | .11 | .07 | .04 | .02 | .01 | .01 | .00 | .00
12 |1.43 {102 | .71 | .48 | .32 | .20 | .13 | .08 | .05| .03 | .02 | .01 | .01
13 2.00 |1.48 [1.07 .75 .52 .35 .23 .15 1 .09 .06 | .03 | .02 | .01
14 |2.68 [2.05 |1.54 {1.12 | .80 | .55 | .38 | .25 | .16 | .10 | .07 | .04 | .02
15 |3.44 (2,72 |2.10 {1.59 [1.17 | .84 | .59 | .41 | .27 | .18 | .12| .07 | .05

ous and appropriately spaced it is possible to exceed the AOQL by substantial
amounts, as the example below will show. The Dodge plan was intended to
serve as an aid to the detection and correction of malfunctioning of the produc-
tion process and this use would tend to prevent the occurrence of such a phenome-
non. Parenthetically, it should be remarked that the information obtained in
the course of inspection according to either the plans discussed in this paper or
any reasonable scheme should, if possible, be sent at once to the producing
divisions for their guidance.

An example to show that the AOQL can be exceeded can be constructed as



48 A. WALD AND J. WOLFOWITZ

follows: Let ¢« = 54 and f = 0.1. Then according to the graphs of [1], page
272, the AOQL should be 0.02. Define a sequence of 60 successive units free
of defectives as a segment of type 1, and a sequence of 60 successive units where
the production process is in statistical control with p = 0.1, as a segment of type
2. Suppose that the sequence of units produced consists of segments of types
1 and 2 always alternating. Then it follows that the first item inspected in a
segment of type 2 is always inspected on a partial inspection basis. We now
assume that, unless the occurrence of a defective has previously terminated
partial inspection, the 1st, 11th, 21st, 31st, 41st, and 51st items in a segment
of type 2 will be chosen for partial inspection, and if the 1st item is found defec-
tive, the entire segment of type 2 will be cleared of defectives. (Both of these
assumptions favor the Dodge SP.) Then the situation is as described in the

following table:

1) (2) (3)
Ezpected number of defec-
twes remaining in seg-
Probability of first ment of type 2 after
terminating partial partial inspection
inspection at has been ter-
each item minated (1) x (2)
1st .1 0 0
11th (.9) (.1) = .09 .9 .081
21st (-9)%(.1) = .081 1.8 .1458
3l1st (.9)3(.1) = .0729 2.7 .19683
41st (.9)4(.1) = .06561 3.6 .236196
51st (.9)5(.1) = .059049 4.5 .2657205
Ezpected number of defectives
Probability that an entire left in a segment of type 2
segment of type 2 will which has been inspected
be partially inspected only partially \ Product
(.9)¢ = .531441 5.4 ' 2.8697814
Sum = 3.7953279
.'79532
The AOQ is therefore 3.7953279 = .0316+, while L = .02.

120

It is therefore difficult to compare the Dodge plan with any of the plans de-
scribed in this paper with respect to their effect on a production process not in
statistical control. If the production process is in statistical control, then, as we
have already seen, SPA requires minimum inspection (and, incidentally, because
of the existence of statistical control, produces a fair degree of local stability).
If, when statistical control exists, one requires both maintenance of a given
AOQL and a higher degree of local stability than is produced by SPA, the rele-
vant comparison is between the Dodge plan and SPC. Both will probably give
good results as regards local stability, but it is not possible at present to make
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these intuitive notions precise, as we have not given an exact definition of local
stability. The following example (in which statistical control is assumed) may
not be unrepresentative of what the situation is with regard to the amount of
inspection required.

Fraction of product inspected under the Dodge plan and under SPC when

L = .045 f=.
Fraction of product Fraction of product inspected under SPC when
4 inspected under the
Dodge plan No = 400 No = 1000 No = 2000

.01 .12 .12 .10 .10
.02 .15 A7 A1 .10
.03 .19 .22 .14 .11
.04 .23 .28 .19 .15
.05 .28 .34 .26 .21
.06 .33 .40 .33 .29
.07 .39 .45 .39 .37
.08 .45 .50 .46 .44
.09 .52 .54 .51 .50
.10 .58 .57 .55 .55

The decrease in inspection required by SPC as N, increases is evident in this
table. When N, = 2000 SPC requires less inspection than the Dodge plan,
when Ny, = 400 it requires more inspection than the Dodge plan. How the
various degrees of local stability achieved compare remains an open question.
The case when N, = 400 probably lies in the region where SPC is inefficient
(as regards amount of inspection) and corresponds to a high degree of local
stability. -

We note that both plans call for increased inspection as the quality worsens
(p increases). If the manufacturer is required to pay for the inspection this
serves as an added incentive to improve quality of output.
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