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1. Introduction. In a previous paper [1] the author dealt with the following
problem: Let {z;} (# = 1,2, ---, ad inf.) be a sequence of independently dis-
tributed random variables each having the same distribution. Let a be a given
positive constant, b a given negative constant and denote by n the smallest
positive integer for which either

(1) a+ - +azm2a
or
(2) a+t o422, Db

holds. The main problems treated in [1] were: (1) Derivation of the probability
that the cumulative sum reaches the boundary a before the boundary b is reached;
(2) Derivation of the characteristic function and the distribution function of =.

In this paper we shall consider the following more general problem: Let K =

{kizr, -+ ,20)} (¢ = 1,2, --- , ad inf.) be a given sequence of functions and let
n be the smallest positive integer for which either

3) ka(zr, --+y2a) 21

or

(4) ka(zi, -++,20) £ —1

holds. No restrictions are imposed on the sequence K except that it must be

such that the probability that » < o« is equal to one. The purpose of this

paper is to dérive some theorems concerning the probability that k.(z1, « - - , 2za)

> 1 and concerning the expected value of n. Obviously, the problem formulated

here is a generalization of that considered in [1], since the latter can be obtained
2 a+b

a—b(z‘+ +zs)—a_b.

by putting ki(zy, -+ , ;) =

2. The conjugate distribution of z. Let z be a random variable whose dis-
tribution is equal to the common distribution of z;. In this section we shall
introduce the notion of the conjugate distribution of z which will be used later.
According to Lemma 2 in [1], under some weak restrictions on the distribution
of z there exists exactly one real value hy # 0 such that

(5) E(™) = 1
where E(u) denotes the expected value of « for any random variable u.
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For simplicity we shall assume that z has a continuous distribution admitting
a probability density everywhere, or that z has a discrete distribution. By the
probability distribution f(z) of z"we shall mean the probability density of z, if
the distribution of z is continuous. In the discrete case f(z) will denote the
probability that the random variable takes the value z. From (5) it follows that

(6) F*(2) = e™f(z)

is a probability distribution. We shall call f*(z) the conjugate distribution of z.
For any random variable u we shall denote by E*(u) the expected value of u
under the assumption that the distribution of z is given by f*(z). The, expected
values E(u) and E*(u) may depend on the sequence K = {ki(e1, ---, 2:)}
#=1,2, ---,adinf.). Occasionally we shall put this dependence in evidence
by writing E(u | K) and E*(u | K), respectively.

3. Two theorems. In this section we shall derive two theorems. The first
theorem is concerned with the probability that k.(z1, -+, 2,) > 1 and the
second theorem with the expected value of n. In what follows the operator E;
will mean conditional expected value under the restriction that k.(zy, - - -, z,)
> 1 and E; will mean conditional expected value under the restriction that k,
(21, -+, 2n) < —1. If the distribution of z is given by f*(z), these conditional
expected values will be denoted by the operators E Y and By, respectively.

THEOREM 1. Let K = {ki(z1, - -+, 2:)} be a sequence such that the probability
that n < o s equal to one under both distributions f(z) and f*(z). Let v denote
the probability that ka(21, - -+ , 2.) > 1 when f(2) is the distribution of z, and let
+* denote the probability of the same event when f*(z) is the distribution of z. Then

Znho - ’_)f Znho _1- r*

(7) E]_(e IK) ot Ez(g lK) T
and

—4n Y. —2Znho — 1 - Y

®) Bl K) =T BRI = g

where Zn, = 21+ <+ + 2n.
Proor: From (6) it follows that

Znho _ F*(z1) - - f*(za)

® ° @) - fen)
and ‘
10) oo _ F@) - fle)

f*@) -« f*(2a)

Aset (21, -+, 2,) will be said to be of type 1 if and only if —1 < kn(z;, -+,
2m) < lform =1,---,n — 1and ka(z1, -+, 2) 2> 1. Similarly a set (2,
-+ - z,) will be said to be of type 2 if and only if —1 < kn(z1, -, 2n) < 1for
m=1,---,n — 1and ka(z1, -+, 2,) < —1.
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‘We shall prove Theorem 1 under the assumption that the distribution of z is
discrete. Because of (9) we have

_ (21 zn)

X f@) - fG)

(21'. .oy

> @) -+ f*(zn)
Zubo| gy = Ey(TH@) - e )
(11) Ey(*"™|K) El( TG - [

where the summation is to be taken over all sets (21, - -+, 2,) of type 1. But
%*
the last expression is obviously equal to 77 and, therefore, the first equation in

(7) is proved. The second equation in (7) follows in the same manner if we take

into account the fact that the probability that n < « is equal to one. Similarly,

equation (8) can be obtained from (10). The proof can easily be extended to

the case when the distribution of z is continuous. Hence, Theorem 1 is proved.
TeEOREM 2. If Ez # 0, the relation

E(Z.|K)

(12) En|K) = —%

holds for any sequence K = {ki(z1, -, 2;)} for which one of the following two
conditions s fulfilled:
(a) There exisls an integer N such that the probability that n < N 1is equal to one.
(b) E(n | K) < « and the first four moments of z are finite.

Proor: First we shall show that condition (a) implies the validity of (12).
For any integer 7 we shall denote 2, + --- 4+ 2; by Z;. Since the probability
that n < N is equal to 1, we have

(13) E@Z.|K) + E@u1+ -+ + 2y) = EZy = NEz.

Since the conditional expected value of (2,41 + -+ + 2zw) for a given value of
n is equal to (N — n)Ez, we have

(14) E@un+ -+ 2xv) = E(N — n|K)Ez = NEz — E(n | K)Ez.

Equation (12) follows from (13) and (14).

Now we shall show that condition (b) implies (12). Denote by P the prob-
ability that n < N. Let the operator Ey denote conditional expected value
under the restriction that n < N, and let the operator Ey denote conditional
expected value under the restriction that » > N. Then we have

(15) PyvEx(Zy) + (1 — Py)Ey(Zy) = E(Zy) = NE:.
Since

= Enx(Z. |K) + ExGor + -+ + 2x | K)
(16) Ex(Zy) = Ex(Z.|K) + Ex(N — n|K)Ez

= Ex(Z. | K) + NEz — Ex(n | K)Ez,
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we obtain from (15)

(17) Py{Ex(Z. | K) + NEz — Ey(n | K)Ez} + (1 — Py)Ey(Zy) = NEz.
From E(n | K) < = it follows that

(18) lim (1 — Py)N = 0.

N=c0

Now we shall show that (18) implies the validity of
(19) lim (1 — Py)Ey(Zx) = 0.

N=00
Let Ty = Zy — NFEz. Because of (18), (19) is proved if we can show that
(20) lim (1 — Py)Ey(Ty) = 0.

N=00

Denote by Ry the set of all points (21, -- -, zy) for which n > N. Then the
probability measure of Ry is equal to 1 — Py and

(21) (U= POEWTN) = [ Tuile) - fen) dey - dew.

Let Ry be the part of Ry in which Ty < —N, R} the part of Ry in which Ty > N
and R the part of Ry in which —N < Ty < N. Because of (18) we have
22) }viﬂ.fnngNf(zl) o few) day - dzNi < lim (1 = PYN = 0.
Denote the cumulative distribution function of Tx by Fy(Tw). Clearly,

23) f L Taf() - (o) de -+ dow < fN "Iy dF(Ts) < ]—\1,—3 fN " dF (T,

T
Since the first four moments of z are finite, the 4-th moment of —\/—;’T’ converges

to 3¢* where ¢ is the standard deviation of z. Hence

+-o0
24) lim [ L TLdRy(Ty) = 34"
N=00 vY—o0 ]V2
From (23) and (24) it follows that
(25) lim fﬂ L Twf(z) -+ f(ex) dey -+ dew = 0.
N=00 N ,
Similarly we can prove that
(26) lim f Tef() - few) doy - - dew = O.
N=00 E.v

KEquation (20) follows from (21), (22), (25) and (26). Hence (19) is proved.
From (17), (18) and (19) we obtain

@7) lim Py {Ex(Z.|K) — Ex(n|K)Ez} = 0.

N=eo
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Since Ez # 0, lim Py = 1, lim Ex(n|K) = E(n|K) and lim Ex(Z, | K) =
E(Z, | K), equation (12) follows from (27). Hence condition (b) implies (12)
and Theorem 2 is proved.

4. Lower limit of E(n | K). In this section we shall derive a lower limit for
E(n | K). First we shall prove the following lemma.
Lemma 1. For any random variable u we harve

(28) eE(w) < Ke".
Proor: Inequality (28) can be written as
(29) 1 < Ee*

where ¥ = u — Eu. Lemma 1 is proved if we show that (29) holds for any

. . ~ . ’ . .
random variable u’ whose mean is zero. Expanding ¢* in a Taylor series
around ¥ = 0, we obtain

’
=14 + ef” where 0 < £(u') < w'.

Hence
Ee*" = 1 4+ LEu’*" > 1

and Lemma 1 is proved.

Now we are able to prove the following theorem.

TreEOREM 3. Let K = {Ki(21, -+, 2:)} be a sequence of functions such that
the probability that n < o is one under both distributions f(z) and f*(z) of z. Let
v be the probability that K.(21, -+, z.) 2 1 when f(z) is the distribution of z,
and let v* be the probability of the same event when f*(z) is the distribution of z.
Then

(30) E(’an)_hoE ['ylog—+(1 —'y)log”_l’:]

and

(31) E*(n|

1 ﬂy* 1 — ,Y*
* LA —_ ¥
—hoEz*[7 logv+(1 v*) log =’
provided that Ez and Ez* are not equal to zero.

Proor: First we shall prove Theorem 3 in the case when there exists an integer
N such that the probability that n < Nisone. According to Theorem 2 we have

E(Z, lK)
Ez E

From Lemma 1 and Theorem 1 it follows that

32) En|K) = [YEA(ZA | K) + (1 — 7)Ex(Za] K)L.

* ]
33)  WEZ|K) <logT-  and hEx(z,| K)< log ; —
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From (32) and (33) we obtain

hEz E(n|K) = hlyE:(Zs| K)

(34) * Ak
+ (L= VB2 | K < vlog T + (1 = n)log 7=

[nequality (30) follows from (34) if we can show that hE(z) < 0. From Ee** =
1 and Lemma 1 it follows that heE(2) < 0. Since ko # 0 and E(2) # 0, we must
have heE(2) < 0. Hence (30) is proved. To prove (31) we proceed as follows:
From Theorem 2 we obtain

(35) —hoEZ*E*(n|K) = —hfy*Ef(Z.|K) + (1 — y*E;(2.|K)].
From Lemma 1 and Theorem 1 it follows that
—holy*EY (2. | K) + (1 — v Ej (Za | K)]

(36) 1 —
< *log B+ (-9 log 7.

From (35) and (36) we obtain
Y

37) WEH@E0[K) 2 7% log T + (1 — %) log 1=

Since E*¢™"* = 1 it follows from Lemma 1 that —hoE*2z < 0. Inequality (31)
follows from this and (37). Hence Theorem 3 is proved in the special case when
there exists an integer N.such that the probability that n < N is equal to one.

To prove Theorem 3 in the general case, for any integer N let the sequence
Ky = {kin(z1, - -+, z:;)} be defined as follows: kin(2:, - -+, 2:) = ki(e1, -+, 2i)
for i < N and kx(21, --+,2) = 1forv > N. Denote by vy and 7; the values
of v and v*, respectively, if the sequence K is replaced by Kx. Then we have

(38) En|K) > Em|Kx) 2 haEz l:‘YN IOg + (1= 10g 1= ‘YN]

and

* A%
(39) E*(n|K) 2 E*n|Ky) 2 5 [v?& log ¥ + (1 — 7%) log 5 7”].
YN 1 — o~

Since lim vy = v and lim yx = ~*, inequalities (30) and (31) follow from (38)

N=0 N=00

and (39). Hence the proof of Theorem 3 is completed.

6. Remarks added in proof. The results obtained in the present paper have
obvious applications to sequential analysis. These applications are, however,
not mentioned here, because at the time the present paper was submitted for
publication, sequential analysis constituted classified material. In the mean-
time, the material on sequential analysis has been released and was published in
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this Journal, June, 1945. The results obtained in the present paper are more
general than those obtained in connection with sequential analysis. Theorem 3,
in the present paper, implied the efficiency of the sequential probability ratio
test discussed in Section 4.7 of the paper on sequential tests.
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