CHOICE OF ONE AMONG SEVERAL STATISTICAL HYPOTHESES

By Rarpa J. BROOKNER!
New York City

1. Introduction. Statistical decision is a term which we will apply to that
phase of statistical inference which deals with the following question. Con-
sider one or several variates whose distribution function depends on one or
several unknown parameters; suppose there be given a finite number of mutually
exclusive hypotheses regarding the parameters, whose totality completely ex-
hausts every possibility. If a sample of observations on the variates is made,
the choice of one of the given hypotheses on the basis of that sample is called a
statistical decision. In other words, to make a statistical decision is to give a
procedure which will divide the sample space into as many regions as there are
given hypotheses, and to set up a one-to-one correspondence between these
regions and the hypotheses so that if the sample point lies in any particular
region, the corresponding hypothesis is chosen.

This notion is quite closely connected with both of the fields of statistical
inference that have engaged most of the modern statistical theorists. On the one
hand, it may be considered a generalization of the notion of testing hypotheses,
for in this theory, one gives a procedure which divides the sample space into a
region of rejection and a region of non-rejection of a given null hypothesis.
Then one makes either of two decisions depending upon which of the regions
contains the sample point. On the other hand, the theory of estimation is a
generalization of the notion of statistical decision in which the number of alterna-
tives is not restricted to be finite

As in any phase of statistical inference, our primary aim is to define broad
principles upon which “good” or “best” procedures for making statistical deci-
sions may be based. The general problem of statistical decisions has been formu-
lated by A. Wald, who has also proposed a principle on which the solution can
be based. We are interested, however, in several of the simpler but important.
particular problems in which quite serious calculation difficulties are encountered
in actually finding Wald’s solution. Hence, we will propose in its stead another
principle which quite closely resembles Wald’s for selecting a solution of the
problem of statistical decision.

It may be pointed out immediately that, from a purely logical point of view,
the substitute principle we shall offer will probably be considered to be less
acceptable than its predecessor. We will find, however, by considering its
application to some of the well known problems of testing hypotheses, that the
principle is at least reasonable in leading to certain well accepted results.
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2. Principle determining the “best” procedure. We will first discuss briefly
Wald’s principle and the definition of the criterion that we will employ will be
accomplished by pointing out the differences. A much more general formula-
tion is possible [1], [2], but we will discuss the principle as it will be directly
applied to the problems of statistical decisions when the number of hypotheses
is finite

Consider the variates z;, x2, ---, z, whose probability density function
flxr, 22, +++,2p| 61, 62, -+, 0k) is known except for the unknown values of
the parameters 6;, 6, ---, 0x. We denote by 6 a point in k-dimensional
space whose coordinates are (61, 6;, - -+, 6;) and shall speak of this parameter
space as Q. Suppose that « is any subset of @ and that S represents a system
of finitely many such sets which are mutually disjunct and which cover Q.
Each element, w , of S corresponds to a hypothesis H.,, , which is the hypothesis
that 8 is a point of w, , and the system of all such hypotheses corresponding to S
we denote by Hg.

A sample of N observations on z;, 2s, - - - , p is drawn and the sample may be
considered as a point, E, in the pN dimensional sample space; denote the sample
space by M. We want to decide on the basis of the point E which of the hy-
potheses of Hsshould be accepted. That is, we seek a procedure by which the
sample space may be divided into a system of mutually exclusive regions M,
which are the same in number as the number of elements of S, and by which a
correspondence is set up so that the falling of the sample point into a particular
M., shall cause us to accept a particular hypothesis H,, as the true one. If
the totality of regions M, be denoted M s, it is necessary to give a principle by
which we may prefer a particular system M s over any other system M;.

Wald introduces the notion of a weight function of errors, a function of the
parameters and of the decision made, which might well be defined as the loss
incurred if 6 be the true parameter point and the sample point falls in M, which
causes us to accept the hypothesis H, . Denote the weight function by W (6, wg)
where wg stands for that hypothesis which we choose if E is the sample point;
then we require that W(6, wx) be non-negative, and if 6 lies in wg , W(8, ws) = 0
for then the correct decision has been made and there is no loss.

Perhaps the notion of a weight function can be most clearly understood, and
its importance appreciated, if we consider the place of statistics in the business
world, where possible losses are often computable in terms of money. The
weight function may be taken to be equal to this loss. Suppose a manufacturing
plant has a process which manufactures a product whose efficiency is a measurable
quantity that we will denote by . Suppose « is a random variable whose distri-
hution depends only upon its mean value 6, and the company contemplates
renewing its machinery if the mean value of the efficiency falls short significantly
from a particular value 6, . Then on the basis of a sample of N observations on
r, one of two decisions must be reached: the rejection of the hypothesis § = 6,
(the decision to renew the machinery), or the non-rejection of 6 = 6, (the decision
not to renew it). Suppose the region M, is the region of the sample space such
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that if E falls into M, , we reject § = 8, and M; is the complementary region.
Then we may say that the weight function can be defined by

W, &) =0 for 0 = 6,
W, @) = g(6) for 6 < 6,
W(0, w) =0 for 0 < 6o
W6, ) = h(6) for 0 = 6,

where h(6) is the company’s monetary loss in needlessly changing its machinery
and ¢(0) is a function which expresses the company’s loss in not changing its
process even though the true value of the parameter is § < 6,. The function
g(6) may be of almost any form, but it is only reasonable that it should be a
monotonic non-decreasing function of |6, — 6|, since the loss should, it seems,
increase as the true value of 6 is farther from 6, .

Wald then defines the risk as the expected value of the loss; since 6 is an un-
known, the risk will be a function of 8, and it will also be a function of the system
M S .

(0, Ms) = f W, wg)-f(E | 6) dE.

According to Wald, the “best’’ system of regions, Mz, is that system for which
the maximum of the risk function with respect to the parameter 6 is a minimum
with respect to all possible systems, Mg, of regions. Several important proper-
ties are enjoyed by the system of regions defined in this way, though other
reasonable definitions are possible. Perhaps the criterion of minimizing an
average with respect to 6 of r(6, Ms) rather than the maximum may be con-
sidered more plausible, but such definitions would raise the question of which
average should be used, and the result obtained by using any particular average
would not be invariant with respect to transformations of the parameter space.

Using the notations as introduced above, and introducing the notation W (8, ;)
to be the weight function if the 7th hypothesis is chosen, the principle which
we will use to solve some of the problems of statistical decisions can be given as
follows: In place of the risk function, we consider the s functions

Ri6, E) = W(, «:)-f(E|6) @=12--,5)

where f(E | 6) is a notation for the probability density, and s is the number of
given hypotheses. If we denote by R.(E) the least upper bound of R.(6, E)
with respect to 6, then we choose the system of “best” regions of acceptance by
including each sample point E in a region M; determined such that for all E, in
N[{ ’ R,(Eo) § R,(E{)) fOT all] = 1.

It is interesting to note that a rather general case exists in which the principle
is exactly equivalent with the test of a hypothesis based upon the likelihood
ratio principle. Consider the distribution function f(z,, @3, -+, %, | 61, 6:,
-++, 6x) which is a bounded function of the z’s and #’s. Suppose we are in-
terested in the test of the hypothesis (8;, 6;, -+, 6;) € w where w is a closed



224 RALPH J. BROOKNER

set, of points of the parameter space which does not contain any open subset of
the parameter space. Furthermore assume that for each set of 2’s the distribu-
tion function is continuous in 6, -- -, 6; on an open subset of Q containing w.
We will show that the principle will lead to the test based on the likelihood
ratio if the following is the weight function:
I. If w is accepted, the loss is zero if the true parameter point is in w, and the
loss is a constant ¢, if the true parameter point is not in w.
II. If w is rejected (i.e. @ is chosen), the loss is zero if the true parameter
point is in @ and is a constant ¢, if the true parameter point is in w.
Consider then the region of the sample space for which w is rejected according
to the principle. This region is that for which

Lub. wr.t. 0inwof [ef (x| 9)] < Lub. wr.t. 8in & of [e;f(x | 6)]

where we have set f(x | 0) = f(x1, 22, -+, 2p| 01, 62, -+, Ok), and where Lu.b.
w.r.t. means “least upper bound with respect to.” But the left-hand member
of this inequality is equal to

eflub. w.rt. 8in w of f(x | 8)]

and because of the restriction on w and the continuity of f, we can see that the
lLaub. of f(x | 8) with respect to all  in @ must coincide with the lu.b. of the
function with respect to all 8 in ©, which is the total parameter space. Thus
we have that the hypothesis w is rejected when

cllub. wrt.0inwof f(z | 0)] < aifl.ub. w.r.t. 0in Qof f(x | 6)]

or when

Lub. wrt. dinwof f(x]6) _ a
Lub. wrt.8in Qof f(z]6) "’

The left hand member of this inequality is the likelihood ratio statistic intro-
duced by Neyman and Pearson [3]; hence our test is exactly equivalent with the
likelihood ratio test where the size of the critical region is determined by ¢,
and ¢,.

We pose the following quite hypothetical example to show circumstances
under which the principle proposed is reasonable. The principle does not
exactly apply as it was stated in terms of probability densities and the example
involves discrete probabilities, but the logic seems somewhat applicable. Sup-
pose a game is played which consists of the player’s guessing the number of white
balls in an urn known to contain 10 balls, each of which is either white or black,
on the basis of a sample of four drawings with replacements from the urn. Let
us assume that there are eleven mutually exclusive hypotheses (as to the number
of white balls in the urn) to choose among, and the player must make a choice
of one of them after observing the drawing which can give 16 different results.
Assume that the one who plays the game pays a banker a varying sum of money
if he makes a wrong decision and that the banker has the privilege of choosing
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the population (i.e. the number of white and black balls originally in the urn).
Now on the basis of the assumption that the banker knows the player’s decision
function and will attempt to fix the population so as to make the player’s ex-
pected loss a maximum, it is clear that Wald’s principle, which minimizes the
maximum loss, leads to the best way to play the game.

Now suppose that instead of one player making the choice among the deci-
sions, we have 16 players participating in the game and the first player is to
make the choice if, and only if, the drawing is WWW W, the second player if the
drawing is WWWB, and so on, where W stands for the drawing of a white ball
and B for the drawing of a black one. In this case, if player x assumes that the
banker will try to choose the population most unfavorable to him, then his
decision function based on the new principle is the best method of play.

Although the example indicates that in the usual case which would come up
in practice, Wald's principle would lead to the better procedure, since the
statistician is usually faced with the necessity of giving a decision no matter
what the sample point is, the new principle is useful since one may hope that in
many practical cases the two principles will not lead to widely varying results,
especially if the sample is large.

3. Application of the criterion to the case of testing the mean of a normal
distribution. Now we will show that the criterion will lead to the widely used
test of “‘Student’s hypothesis.”” Suppose x is known to be distributed normally
with unknown mean x and unknown variance ¢°.  On the basis of a sample of N
independent ohservations ay, @, -+ -, zy, “Student’s ¢ is used to test the hy-
pothesis u = 0. 1If & is the arithmetic mean of the N observations and s the
usual sample estimate of the variance, then with ¢t = v/N &/s, the hypothesis
is to be rejected if |t | = {, where ¢, is a critical value at some chosen level of
significance « obtained from the distribution of ¢ under the null hypothesis. We
will use the notation w; for the set of points g # 0 and w, for the set of points
uw=0.

We will consider the problem in reference to the particular weight function
defined as follows:

Wy, o; w) = (y/d)k for u £ 0

W, o;w01) = W

Wy, o;w) =0 for u £ 0

W, 0;w) =0
where as a matter of convenience, we will take & an even positive integer in order
to avoid the introduction of the absolute value of u/¢ which is necessary if k

15 an odd integer. We also take £ < N.
The density function of the sample of N observations is

c . e—(IIEo'-’)S(Ia*M) 2
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where C is a constant. Then the two functions E(6, E) are
WC .o 200522

Ry(6, E) = if y =
me)=o if % 0
Rz(o E) N+k e—(1/2¢’)8(z..—u)’ ifu=0
R,(6,E) = 0 if u = 0.

To maximize R,(0, E), we set
6R1(0, E) - [—NW WSIC,z,] Ce_(l/Q,Z),g,‘z‘ =0

+
oNt1 oN+3

do
which gives
ot = Sxi
N
hence
N
R\(E) ?S‘:A)IIN e

To maximize Rx(6, E), we set
OR:(6, E o
—3'((9‘:_) = [’G + fzS(xa —_ ”)] ;”NT-E .e (1/202) 8( 0?2 _ 0

and

do

which give the two relations

OR(0, B) _ [_ Nkt S(xaaz_ ”)2] ,Si runesten? _ g

o = —% S(xa — 1)
and

2

Then
—u(N + k) Sz — 1) = kS@a — u)*
or
pt — w1 — k/N) — (k/NHSc: = 0
which gives the maximizing value of

u = T = k/N) &= /21— k/N)* + (4k/NDSz
2
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and it can easily be shown that the maximum is reached for the value of u*
using the + sign when Z is positive and the — sign when % is negative. We will
carry through the case & > 0 only as the case £ < 0 follows in a similar manner.
We have

(uH)* B+ V.
(u*)“"‘L")[—S(:ca _ #*)]i(NHc) re .
To find the region of the sample space for which we should accept the hy-

pothesis u 7 0 (i.e. the critical region for rejection of the hypothesis u = 0), we
seek those points E for which B,(E) £ R,(E), i.e. those for which

WN}N (#*)kk}(h’-l-k) 3
(Sza™ = W= S, — wHPo ¢

Ry(E) =

or for which
(W)PIVB[—8(z — p*)N+D
(Sz2)* =¢

where ¢ is a positive constant. Since both sides of the inequality are positive,
this inequality is equivalent to

(”*)N—k(“* —_— a‘:)N-Hc
o (50"

where ¢; is another positive constant.
Now we consider the statistic

£ Na N
N -1 823 — N&#  Szt/Z—-N

C1

IIA

T =

from which we have
Sza/#= (N/T" + N.
Also note that
2(u*/2) = (1 = k/N) + V(1 — k/N)?+ (4k/N?) (S22 /%)

(and this is true whether Z is positive or negative). Now we can write the criti-
cal region (1) as

(W*/)VF(u*/Z — 1)V
Sao/sy” =

or
[1 — k/N + /@ = k/N)* + (@k/N)1 + 1/T)]" 11 + 1/T°]™
J=1 = k/N + V{1 = k/N} + @/N)A + /)" =

where c; is another positive constant. We denote the left side of this inequality
by ®(T?), and it can be shown that #(T”) is a monotone decreasing function of 77,
Thus since the critical region is defined by the relation #(7%) < constant and
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the critical region using “Student’s ¢” is T = constant, these procedures are
exactly equivalent.

4. A Problem in statistical decisions. The question which aroused the interest
of the writer in statistical decisions is the following one of multivariate statistical
analysis. Suppose 21, 2, - -+, £, are known to be normally distributed with
unknown means and unknown variances and covariances, and on the basis of
a set of N independent observations, a test is to be made of the hypothesis
E(@) = E(x) = --- = E(z,) = 0. Such a test may be carried out by using
the generalized Student Ratio [4], and the hypothesis is either to be rejected or
accepted as a whole. But consider the case in which the null hypothesis is
rejected ; it seems quite natural to ask for a more enlightening statement. Is it
not possible to say that on the basis of the sample, the hypothesis should be
rejected for z;, , zi, , - -+, i, but not rejected for xi,,, , Tipyy, -, 2,2 Thus
we seek a division of the sample space into 2” mutually exclusive regions, each
of which will lead us to reject the hypothesis of zero expected values for a par-
ticular set of the x;’s and to accept it for the remaining set. ‘

We will consider a solution of the problem in the case that the covariance
matrix of the joint normal distribution is known, and will motivate that solution
by considering first the case of two variables.

Suppose that X and Y are normally and independently distributed with un-
known means, a and 8, and with unit variances. The joint probability density
function is then of the form

JX, ¥) = (1/2m)-¢ OO,
The set of hypotheses is given as follows:

H, is the hypothesis that « = 0 and 8 = 0
H, is the hypothesis that & % 0 and 8 = 0
Hj; is the hypothesis that « = 0 and g £ 0
H, is the hypothesis that « £ 0 and 8 = 0.

We have a sample of N independent pairs of observations (X,, Y,) where ¢ =
1,2, ---, N; then the density function in the 2N*dimensional sample space is

(1/27r)N _e-—-5S[(X,—a)2+( Y,—ﬂ)zl.

We seek the set of regions M,, M,, M3, M, in the sample space which are
chosen such that if the sample point E falls in M; , we accept the hypothesis H; .
We take the following as the values of the losses if the wrong decision is reached:

I. If H, is accepted,

i) for any parameter point (@, 8), the loss is a continuous function of
(o + B°), say W(a* + B°), which is zero for « = 8 = 0, is differentiable,
strictly monotonically increasing, and possesses a finite maximum
when multiplied by the normal density function.



STATISTICAL HYPOTHESES 229

II. If H; is accepted,
i) for any parameter point (e, 8) except (0, 0), the loss is W(8*) where
W is the same function as above,
ii) the loss is W, if the true parameter point is (0, 0).
II1. If H; is accepted,
i) for any parameter point (a, 8) except (0, 0), the loss is W(a®) where
W i the same function as above,
ii) the loss is W, if the true parameter point is (0, 0).
IV. If H, is accepted,
i) the loss is W, if the true parameter point is either (, 0) for a = 0,
or (0, 8) for g = 0
i) the loss is W; if the true parameter point is (0, 0)
where W, W, and W; are constants subject to some slight restrictions which
will be pointed out later.
The functions R;(6, E) are then the following:

Ry(9, E) = W(a’ + £)G(c, B) foro® 4 8 # 0

=0 fora=8=0
R:(6, E) = W(5)G(a, B) for 8 = 0

= W1G(0, 0) fora=8=0

=0 fora=0,8=0
Ry(8, E) = W(a")G(a, B) for a # 0

= W1G(0, 0) fora=8=0

=0 fora =0,8#0
R.(8, E) = W.G(e, 0) fora = 0,8=0

= W.G(0, B) fora=0,8+%0

= W3G(0, 0) fora=8=0

=0 for of >~ 0

where G(a, B) is the normal distribution function
O . WiE—at+u-5?2)

z and y being the sample means. It should be pointed out that the use of the
distribution of the sample means instead of the joint distribution of the observa-
tions is justified since the sample means are sufficient statistics for the parameters
a and 8.

We will use the notation E;(E) to denote the maximum of Ry(8, E) with respect
to a and B, and it can easily be seen to be the maximum of two expressions which
we will denote by II(1) and II(2) where II(1) is the maximum of W(8%)G(e, B)
and II(2) is the maximum of W,G(0, 0). Similarly, B3(E) is the maximum of
ITI(1) and III(2), and Ry (E) is the maximum of IV(1), IV(2), and IV(3), where
these are the maxima of the two expressions involved in R3(6, E), and the three
expressions in Ry(6, E), respectively.

We will first show that the function E,(E) is a monotonic increasing function
of (' + ¥’). We know that the maximum of R,(6, E) is reached for values of
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« and B for which the partial derivatives of R;(0, E) with respect to a and 8
are zero, i.e., for which

N — )W (a® + 6% + 2aW' (e’ + 8)]G(e, B) = O
and
Ny — BW( + ) + 28W'(” + B9)]G(e, B) = 0

where W'(o® + B°) is the derivative of W(a® + B°) with respect to (o® 4 B°).
Since G(a, 8) #= 0, and W’(a” + 8°) # 0, these relations imply

r— o a
y—B8 B
or Bz = ay. Thus the maximum of the function R,(8, E) occurs for values of
a and 8 which satisfy the relation a = (z/y)8.

Consider any two straight lines « = (2//y')8 and « = (z”’/y"")8, and the
values of the function R;(6, E) along these two lines. Obviously the values of
the first factor W(a® 4 8°) are equal for points along the lines equidistant from
the origin. Also, if the values of z’, ¥, z”’, and y”’ are such that > + y”* =
2’ 4 y'”, the values of the function G(a, 8) along both lines are equal for points
equidistant from the origin, and it follows that Ei(z’, ') = Ri(z”, y""). Thus
we have that B,(E) is a function of (z* + 7).

Note that if the value of 2> 4+ y'”* is greater than the value of z’* 4+ y'*, the
curve representing the function G(a, 8) along o = (2'//y'")8 is the same as that
along the line & = (z’/y’)B, but it is shifted further from the origin. The values
of W(o? + B°) are independent of z and y and the function is monotonic in
a? + (2. Thus, the value of G(a, 8) for which R;(#, E) is a maximum on a =
(#'/y")B8 multiplies a larger value of W(a? + 82) than on « = (z''/y’")B, so the
maximum when z''?2 4 y''? exceeds z'? is the greater. But this proves that
R.(E) is monotonically increasing in (z2 + y?2).

In a similar manner, we now proceed to show that II(1) is a monotonically
increasing function of 4°. We know that a necessary condition for a maximum
of II(1) is that

=0

oII(1) _ oII(1) _

da B 0.

The tirst of these two relations is
W(E)N(@ — ¢)Q(a, 8) = 0

which has the solutions W(8%) = 0 and & = z. But W(8*) = O only for 8 = 0
and this value is a minimum of II(1), hence we have that the maximum is reached
for « = z, so

II(1) = max. of W(ﬁz)ce—!h’(y—ﬂ)’.
B8

But along any two lines o = constant in the (a, 8)-plane, the function W(8*)
has identical monotonically increasing values in 8* and the normal density
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function is identical along two such lines for a fixed value of 4>. An increase in
the value of 3* displaces the normal function from the origin but does not affect
its shape, hence the value of the normal density function at which II(1) takes on
its maximum is multiplied by a greater value of W(g?) when ¢’ is increased, so
II(1) is monotonically increasing in 4*. In exactly the same manner, we find
that III(1) is a monotonically increasing function of z°.

Because the remaining functions are identical with the functions considered
in the special case above, we have that

I1(2) = W,Ce V@& +®
1II(2) = W, Ce ¥+
IV(1) = WyCe
IV(2) = WyCe
IV(3) = W,Ce e,

Now it is apparent that R;(E) is never less than II(1) since
W (o + £)G(a, B) = W(B)G(e, B)

(the equality holds only for @ = 0) and since a function which is never less than
a second function cannot have a maximum less than the maximum of the second
function. Also R,(E) for the same reason is never less than ITI(1). Thus E,(E)
can be the minimum of the four functions R;(E) at most when R,(E) is defined
by I1(2) and Rs(E) is defined by III(2).

Since I1(2) and III(2) are the same monotonic decreasing function of (2* +
y") and since B;(E) is a monotonic increasing function of (@® + 97, there is a
value 7 of (z* + ?) such that B;(E) < II(2) when and only when 2* + 3* < 13 .
But for all values (z, y) we have that B;(E) = II(1) and Ei(E) = III(1), hence
for all values within the circle 2 4+ y* = 75 we have that

2) II(1) = Ry(E) < I1(2)
and
3) II(1) £ RBy(E) < III(2)

so it follows that R.(F) is defined by II(2) and RE3(E) is defined by I1I(2) within
the circle. '

We restrict the values of W, W, and W3 used in the definitions of the weight
functions to be W, < W, < W3, hence for all values of (z, y)

WiCe IV HN < 0t

W,Ce V@) < 7,07V

and
WACeNE T < Ve Y
so Ry(E) is at least as great as II(2) over the whole plane; hence, in light of

relation (2), R.(E) is at least as great as Ry(E) for 2° + y* < r;. Therefore,
since (2) shows that By(E) < R,(E) within the circle; (3) shows that Bi(E) <
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R3;(E) within the circle; and since quite obviously the relations do not hold
outside the circle, we have that M is the set of points

x + y2 < rg .
To determine the region M., we must determine those points outside M, for
which By(E) < R3(E) and R,(E) < R4«(E). Consider first the part of the plane

outside M, for which R,(E) is defined by II(2). This is the region for which
1I(2) > II(1). Consider the curve in the plane defined by IT1(2) = II(1), that is,

W,Ce N = 11(1).
We take differentials and have
~N@* + PI)WiLe ¥ [wdy + ydy] = 2y[dII(1)/d(y")]dy

but this shows that dy/dz has the opposite sign from y/z since dII(1)/d(y%) is
always positive. Also note that for z = 0, the equation Ri(E) = II(2) is identi-
cal with the equation II(1) = II(2), so for x = 0, we have II(1) > II(2) when
|y | > roand II(1) < II(2) when | yi < ro. Furthermore, the curve II(1) =
11(2) crosses the z axis at a finite value of z, since for ¥ = 0, II(1) is a constant
while II(2) is a decreasing function of z.

We will refer to the various regions in the first quadrant of the (x, y¥)-plane
shown in Figure I as follows: A is the part of the quadrant which is M; ; 4, B,
B’, and U are the regions in which R,(E) is defined by I1(2), that is, in which
1I(2) > II(1); and in the same manner, 4, B, B’, and ("’ are the regions in which
Ry(E) is defined by III(2).

Since I1(2) and ITI(2) are identical, we see that within the regions B and B’,
Ry(E) = Ry(E) since in these regions R,(E) is defined by 11(2) and Ry(E) is
defined by I1I(2). We have previously pointed out that II(2) is never greater
than B,(E), hence it is clear that B and B’ should belong to either M, or M3,
and we will arbitrarily decide that B is part of M; and B’ part of M.

Consider then the region C'; here Ry(E) is defined by 11(2) and R;(E) by IT1(1),
so within C

I(2) = I11(2) < III(1) = Ry(K)

and again I1(2) < R(E), so the region C is part of M.. By the same argument
we have that C’ is a part of M; since within ¢’

I11(2) = 11(2) < II(1) = Ru(K)
and I11(2) < Ry(E).

Now consider the remainder of the quadrant outside A, B, B’, C, and (.
Here R,(E) is defined by II(1) and E3(E) is defined by I11(1). Since II(1) is
the same monotone increasing function of y° as 1TI(1) is of 2°, we have II(1) >
III(1) for [y | > |z |and TI(1) < III(1) for [z | > |y |. Thus we see that in
the region under discussion, RE:(E) is a minimum at most in the regions D and
E and R3(E) a minimum at most in D’ and E’.
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In order to determine then, that part of D and E which belongs to M,, we
seek the region for which

II(1) < IV(1) when R, (E) is defined by IV(1)
11(1) < IV(2) when Ry (E) is defined by IV(2)
11(1) < IV(8) when R4(E) is defined by IV(3).

But within D and E we have that 3* < 2%, so it follows that IV(1) > IV(2) so
R4(E) is never defined by IV(2) in D or E. Hence we need determine the points
which satisfy the first and third of these relations. Now it is clear that the
relation II(1) < IV(1) is equivalent to the relation |y | < yo for some value
yo since II(1) is monotonically increasing in y* and IV(1) is monotonically de-
creasing in 4°. Let y = ¥, be the line dividing D and E.

We impose a restriction on Wy such that D is part of M and E is part of My .
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This restriction is that within E, IV(3) < IV(1); note that since we are con-
cerned only with |y | < | x|, this imposes the greatest restriction on W when
T =y = ¥, SO we are requiring that

WCe VIt < Ww,Ce i
or

l’Vg § ]Vge.HNyz.

It is simple to see that because of symmetry with respect to both axes and the
origin, M, is defined by 2* + 4* > 7§ and |y | < |z |and |y | < % ; Ms by
£+ y >rand|z| <|y|and|z| < 2;and Myby o’ + ¢* > roand |y | >
Yyoand |z | > z. It should be pointed out that z = .

We now consider the general case with a known covariance matrix. Con-
sider the joint normally distributed variates X7, X , X: whose covari-
ance matrix is || o || (G, j = 1, 2, - -+, p), where the o7;’s are all known and
where || o7; || is positive definite. The mean values of the X:’s are 81, 8z, - - -,
B, which are unknown. It is simple to see that we can consider new variates
X: = Xi/\/o% whose mean values are a; = B:/A/oF and whose covariance
matrix is || ¢;; || where ¢;; = 1. If a sample of N independent observations on
the X3's are given, we have immediately the observations on the X’s, and we
denote the sample means of the X,’s by 21, 22, - -+, z,, respectively.

There are 2° hypotheses among which we wish to choose; as notation, we let

Hybea=a= -=a =20

H1 beal;é(),a2=a3=-~=a,,=0

]12 beag#f),a1=a3=-~=a,,=0

Hipbeaioy # 0,03 =gy = -+ =a, =0

ete.  As a further abbreviation, let H denote any one of the p hypotheses H, ,
fH,, -+, H,;let I denote any of the (¥) hypotheses Hy,, Hys, - - - ; H® denote
any of the (7) hypotheses Hiyg, Hi, --- ; ete. Alsolet M;;,...;, be the region
of the sample space for which we accept the hypothesis H;:,...;, , and let
Rijiy.5,(6, E) = W(0, Hi s,...q,)f(E | 6) be the risk density function if the hy-
pothesis H;,;,...;, is chosen, where we have used the notation 8 to represent the
parameter point ay, as, * -+, ap.

We will also adopt the following notations: in referring to the parameter point
(a1, ag, -+, ap), we will write (41, %2, -+, %) = 0 to mean all points for
which A = Qi = 0 = Oy = 0 and (a,-l)(a,-z) s (a,;) # 0 where ’1:1, ’1:2,
s e, 01,02, , Js are a permutation of the integers 1, 2, ---, p. Further-
more, we will write [J1, j2, -+, 7<) # 0 to mean (4, %2, - -+, %) = O.

By @ we denote the covariance matrix of the X;’s and by L its inverse; we will
denote the elements of L by X;;. By Q**""* we denote the matrix obtained by
striking out rows 7y, 4y, - -+ , 7, and columns 4y , %, - - - , & from Q; by L'¥¥*" "%

we denote the inverse of the matrix Q'***""** and we will write the elements of
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Ly % g5 \i¥27% | Thus we can write the joint distribution of the set of
sample means 1, 2z, -+, Tp S
(4) Ce-iNEZ)‘.-i(zg—a;)(zg-—a,')

Concerning the definition of the weight function, we will assume the following:

1. If H,is accepted,

i) the loss is W(ZZA;oua;) if the true parameter point is (e,
az, -+, ap), where W is a continuous, strictly monotonic increas-
ing function whose value is zero if (1,2, ---, p) = 0. The func-
tion is restricted to increase slowly enough that the product of it
and the density function (4) has a finite maximum with respect to
the a."S

I1. If H' is accepted,

i) consider in particular H,, then for all parameter points except
1,2, ---,p) = 0, the value of the loss is W(ZZA}aa;), where W
is the function defined above.

ii) the loss is W, if the true parameter point is (1,2, ---, p) = 0.

I1I. If H® is accepted,

i) consider in particular H,,, then for all parameter points except
(1,2, ---,p) = 0and [a] # 0 and [b] # 0, the loss is W(Z2\Sasa;),
where W is the function defined above,

ii) the loss is W3 if the true parameter point is either [a] # 0 or [b] # 0,
where Wy < W3,

iii) the loss is W if the true parameter point is (1,2, -+, p) = 0 where
We =z Wi.

In general; if H* is accepted,

i) consider in particular H,...;,, then for all parameter points except
(1’ 27 e ’p) = 07 ['Ll];é 0). [1*2] # 0’ Tt [il)iﬂ * 0) [il)id # Oy R
etc., the loss is W(ZZN? " *a,a)),

ii) the loss is W¥ (r = 1,2, -+, k — 1) if [¢j,, 95, -+ ,1;] # 0, where
Jiy J2, +++,jr are r different positive integers less than or equal to k.
Also Wiy < Wi, < --- < Wi, WiTh < WEL,, Wi < Wis5 < Wi,
etc.

iii) the loss is W& if (1,2, ---, p) = 0, where Wi < W5,

where the W, are constants subject to some further slight restrictions which we
will impose later. The ZZ has been used throughout to denote summation over
all values which 7 and j take on in If"f"""‘.

We consider first the risk density function corresponding to H,, that is

Ro(o, E) — W(szijaiaj)ce—l,vlz)\”(z.-——ug)(z;—a,')‘
To maximize Ro(6, E), we have the set of p equations obtained by setting the

p partials of R(8, E) with respect to the a; equal to zero, which are necessary
conditions. We have

oR.(6, E) _ {g}j—f + [N2N (2, — a,-)]W} CeINERNi(rima ey

Oo;
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so the necessary conditions are
ow .
é?x'; + [NE)\,’,'(CC,’ - ai)]W =0 (7' = 1) 2) ) P)

This can also be written
(22)\.-,a,-)D,W(z) + W(Z)NZ)\.',‘(CII,' - a,-) =0
where we have set z = ZZ\;;aia; and where we use the notation D, to indicate

differentiation with respect to z. Fix ¢ at two particular values, say a and b;
then two of the equations of this system can be written

(22N 0)D.W(z) + WERNZ\j(x; — a)) = 0
22\pa)D,W(z) + WERINZN(x; — @) = 0
that is
(ZNhajo)[ZNsi(z; — @j)] = (ZNs52) [ZNaj(z; — @;)]
or
(Zhajoj) (hpjzj) = (ENpja;)(ZNajr;).
This we can write as
ZINahoka i = ZZNpkNa 00 ;
or
SIhaAn (et — apz;) = 0.

Giving @ and b the p’ combinations of values which are possible, this is a set of
p° linear homogeneous equations in the p* unknowns (a2 — a;) which has the
obvious solution axy — axr; = 0 or a;mr = axx;.

Thus we have that the maximum of the function Ry(6, E) is reached for a set
of values of the a;’s which lie on the straight line
4) a; = (zi/T)ay .

The function Ro(E), which is the maximum of R,(8, £) with respect to the
a;’s is a monotonically increasing function of (£2\;;r;x;), which we show in the
following manner. Because of (5), we see that

SN — a)(xj — ;) = TINje — (@i/2)an)lz; — (x;/1)en]
= 3Nl — (er/m)l
Also,
SN = 2N (/1)
Hence we see that Bo(E) is the maximum with respect to w of

25 —IN(1—w)2Z2 N\ jzizj
W(w ZE)\;,’L,'I]")CG w=e) 1T
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so for two sample points E’ = (xy, 23, -, :c;) and E"” = (z1, 29, -+ , x',f)
such that T2\ zix; = ZZ\iz; 27, it is clear that Ry(E’) = Ro(E"); thus Ro(E)
is a function of TI\;x:x;.

But then without loss of generality, we can consider Ro(E) along the z; axis,
ie.forzs = 23 = --- = x, = 0. Using relation (5), we see that this implies
that the maximizing parameter values are ap = a3 = --- = a, = 0. But then

}-?o(E) = max. of W()\u af)Ce—%N)\u(zl—al)ﬂ
ay

which we have previously shown is a monotonic increasing function of T .
Therefore RByo(E) is a monotonic increasing function of ZTZ\;;z:x;.

We will furthermore show that the maximum of each risk density function
corresponding to parts i) as given in the weight functions are monotonically
increasing functions of certain quadratic forms in the z; . Consider for example
the function corresponding to part 7) of R,(6, E), that is
(6) 'W(EE)\La,-a,-)Ce-*nz )\{j(t.'—di)(l'j—ai).

We will write the maximum of this function with respect to the a's as Ry(%).
Note that the weight function is not a function of o , hence the partial derivative
of (6) with respect to o, set equal to zero is equivalent to

Ihj(x; — a;) = 0.
Squaring this relation and multiplying by N/2\; gives
(N/2MD) Z2Midj(@ — ) (@ — ) = 0
50 we can write the exponent in (6)
Exp. = —(N/2M)Z2ihi; — Mahiy) (@ — o) (@5 — @),

Because of the definition of \;j, if we write w;; for the cofactor of o¢;in | a5/,
we have

Exp. = —[N/2Mi(] 045 |)*]2 2 (wnw:j; — wnwr) (@ — ai)(x; — ).
But by a well known algebraic identity®,
wnwi; — wwi; = | 35| - [cofactor of (ougi; — oviarj) in | aij]
= | o] -wis

where we have written w}; to be the cofactor of a;;in | o}; | , S0

Exp. = —(N/2\u , 0ij I)EEwi,-(x,- — a)(z; — aj).
But Xu | o‘.'j, = wn = ! o’l,,, ’ hence
EXp. = —'Z—; 22)\5,'(1; - ai)(.’c,- - aj).

Therefore
- . -1 3 (xs—ag P
Bi() = max. of W(Z2N}ja;a;)Ce V33N trimad @imay)

all ay's

2 See M. Bocher, Introduction to Higher Algebra.
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But then it follows in exactly the same way as with Eo(E) that Ri(c) is a
monotonically increasing function of XA zir;. For the other functions Bi(:)
corresponding to other hypotheses H', the argument is identical, and for risk
density functions corresponding to hypotheses with more than one a; = 0,
the same argument is repeated two or more times in succession to give the result.

We will show that for any value of the parameters a; , az, - - - , a, the relation

EINijia; = EENjosa

holds. This relation is true if the relation

@ 22(wii/ | o) — (wis/ | ot D)]esa; = 0
is true where we define wj; = 0. That is, if
(1/ | oii |l 03 NZ2wizon — wij| osjesa; Z 0

where we have substituted wy, for its equal | 63;|. But note that

wi; = cofactor of (u10:i; — ouoy;) in | oy

hence by the identity quoted (see footnote 2)
|U-':'|°~‘ii = nwi; T Wiiwij
so the left hand member of relation (7) is
1/l 0i; 1] 045 D22 (wijon — wnwi; + wier)aie;
= (1/] 0:;|] 0% ) ZZwriwn i ;
= [Zoned’/(| oi; | 03;])
=0

since all matrices here are symmetric and positive definite. Note that the
argument can be repeated one or more times to show

W(S2hija;) = W(SIAL " auq))
or
W(ZINF* T ia)) = W(ZZNF? *aua)
where %%, + - , & are any set of & different integers less than or equal to p,
and jij2 - -+, J, are any subset of 72z - - -, ik .
Consider the maximum of the expressions
Wl:ce—}NEE)‘;i(z;—a()(zi—-ai).

We know that (p — 7) of the ai’s in these expressions are zero and by an argu-
ment similar to that given above®, it is clear that if the r a/’s not equal to zero
are ai, , i, , - -, o, , then the maximum of the expressions is given by

che—hlz}:)‘::li‘z' ilrrr; .

3 See p. 36.
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Also for r = 0, the maximum is obviously
Wgce—-iNEZ)\.‘,'z.‘z,' .
Recall that we have restricted the 1W¥'s so that
(8) Wy < We<-. < W} and Wi, <-.-< WP.
From a previous calculation, it follows that
(9) SENra; = D3NNz = I > -

We can then quite easily calculate the region M, , that is, the region of the
sample space for which Ry(E) is the minimum of all the Ri,....,(E)’s. We
have pointed out that

W(EEhja0) = W(SIANG *a,a))
so it follows that
(10) Ry(E) Z R, 0)
that is
Ro(E) 2 Riiy..5,(E)
s0 long as Riyi,...;,(E) is defined by Ri,...5, ().
From the relations (8) and (9), we have that

(i1) "V(I)Ce_%sz)“""“zi < H]’;Ce—}NZE)\giz;zi
for k = 2,3,---,p. Now because
W‘I’Ce—iNEE)‘”z,'z;

is 2 monotonic decreasing function of Z2\;;x:x;, and because Ro(E) is a mono-
tonically increasing function of TZ\;jz:x;, there is a value 7§ such that within
the ellipse ZZ\;jrir; = 75, the relation

(12) Ry(E) < WiCe ¥2ehiizsi

holds, and outside it the opposite inequality holds. But from relations (10)
and (12), it follows that within this ellipse, no Ri,;,...;,(E) except Ro(E) can be
defined by Rii,...;(#). Then in view of relation (11) and since a quantity is
certainly less than the maximum of several quantities if it is less than one of
those several quantities, the region M, is the set of points X2\ wx; < 75 .

Now consider the functions R,(E) in the region outside M,. We know that
Ro(E) = R.(3) when

"o SINDEING (ei—ag) (zj—aj 1 - AINEEZNgjzz;
max. of W(NEN}ja; ay)¢ VERNmad@imaD o o INERN s

ay’s



240 RALPH J. BROOKNER
and we will write B;(E) = R.(71) when the opposite inequality holds. Consider
a part of the sample space outside M, in which

R:(E) = R:, (%)
R,(E) = R.,(w)

R, (E) = Ry (%)

where k = 1, and where R, (E) %« E;(4) forj % 4,,4,, -+, 4% . We sce in this
case that R,I(E') = Ry(E) = --- = Ry(E) < Ry(E), where again j # 17,
%2, *+* , % . Furthermore, in thls case, because of the relation (11), we have

that E should be a point of either M, , M,,, --- or, M;,. We will arbitrarily
decide in this case that E should be a point of M, (s an integer < k) where

1, is determined so that
E3NBza; £ XAz, foranyt=1,2,---, k.

Now consider the region in which R.(E) = R,G) forallr = 1,2, .-, p.
We see that each E,(2) is the same monotonically increasing function of a quad-
ratic form of the type =ZZ\i;riz;. Hence in order that K be a point of a par-
ticular M, , it is necessary that

13) TN xax; S TENEa; for all s # r.

Now let us consider a fixed r and compare E,(¢) with all R,;,;,... (E)’sfork = 1°
We have pointed out that

(14) IIN wa; 2 TING e,

so R.(i) 2 R, ..;,(?) and hence E,(i) can be a minimum at most when all
R,,l.z....,‘(E) s are defined by other than R, ;,...;, ().

Consider then, any R, (E) when defined by other than R.;(z), that is when
R.,(E) is equal to one of

W2CeW3ENimTi = B (i) (say)

WfCe_éN"“::l”"" = R, (i17) (say)

WiCe WEEN=E = B () (say).
Because of the relations (8) and (14), we have that
R.\(E) £ Riiiy.ii(E)

whenever these are defined by other than R, (¢) and R,:,...;(¢). Furthermore
in the region defined by (13), we see that R, (&) = R, (i), hence R, (E) is
never defined by R,; (i) in this region.

Now the relation R,(i) < R, (#) is easily seen to be equivalent to the relation

(15) TN ;< T?
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for some value r;. With the restriction on W3 that it be not so much larger
than W1 that wken (12) does not hold, R,; (E) is not defined by R..,(iv), we have
that the region for which R,(z) < R.i,...;,(E) is the region defined by (13) and
(15).

We then restrict the relationship between the constants Wi and Wi to be
such that for all points outside of M, but within the region defined by (13) and
(15), the relation TZA¥* gz, = ZZNmxix; holds for ji, ja, -+, jx each
different from r. Note that this is not an unreasonable restriction since the right
hand side of the relation is bounded above by r} , Z2\; z:z; is bounded below by
rs , and therefore, TX\}}*" " 1.z is bounded below by some positive value 7*
where 7* is a monotonically increasing function of 75 .

Using a similar method, the region M ;,...;, can be obtained after all regions
Mii,...., for all m < k have been derived. If some further restrictions are
imposed on the constants in the weight functions similar to those formulated
in deriving the region M, , it can be shown that the region M;,.....(k = 1)
will be given by the inequalities

IINEE; 2 Ty

TSI Img g > 1l for all m < k and all ji, -, jn

SENF g < BNV ik g, for all ji, - -, Js
and

IEINF R < 1

Thus we have rationalized the following solution of the question posed at the

beginning of section 4. We test the hypothesis E(x;)) = E(x) = --- =
E(x,) = 0 using the generalized Student ratio replacing the sample covariance
matrix by the population covariance matrix since the latter is assumed to be

known, at some chosen level of significance. If the hypothesis is not rejected,
we make the decision corresponding to H,. If the ratio is significant, we com-

pute the ratios T?, T?, -- -, T” where by definition 71**""* is the generalized
Student ratio computed for zj,, zj,, -+, xj;, G1, t2, =, %, J1, J2, "+, Js
is a permutation of the integers 1, 2, - - -, p), the variates z;,, zi,, -, T,

being ignored.

We consider the smallest of the ratios computed on the basis of (p — 1) of
the z.’s; say it is 7". Then if T” is not significant at some level of significance
(which need not be the same level as considered before), we make the decision
corresponding to H, ; if T" is significant, we compute all the ratios based on
(p — 2) of the z’s. If T" is the smallest of these, we make the decision cor-
responding to H,.if T"° is not significant but proceed to calculate the ratios based
on (p — 3) of the x/s if it is significant, and so on.

6. Concluding remarks. It should be pointed out that while the derivation
of the explicit inequalities defining the various regions of acceptance may be
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rather involved, for any given sample point I, it is relatively simple to determine
the region of acceptance to which this point E belongs. That is, we calculate
the various values R ;,...q(E) and choose the decision Hj,...;, if Bjj,...;,(E)
is the minimum of the values of R.,...;,(E) for all values of i1, 45, --- , 4.
For making a decision on the basis of a given sample point Z, it is not necessary
to find explicit analytic formulas defining the shapes of the various regions of
acceptance.

Since the principle used here is proposed merely as a substitute for Wald’s
principle for the sake of mathematical simplification, it is felt that in certain
problems Wald’s principle may be used as a check on the results. For example,
it is felt that the new principle is apt to lead to decision regions of the proper
shape though the exact sizes of these regions may not be correct. In cases where
the decision regions cannot be determined by Wald’s principle, it seems possible
that a determination may be made in Wald’s sense among the various decision
regions having the same shapes as those given by the new principle. In the
case considered here, for example, it may be possible to determine new values of
To, i, ey Toot- ,

I should like to express my very great appreciation to Professor H. Hotelling
for many suggestions during the preparation of this paper and to Professor A.
Wald for constant guidance. I should also like to credit Professor Helen Walker
with originally posing the question that led to this research.

REFERENCES

[1] A. WaLp, Annals of Math. Stat., Vol. 10 (1939), pp. 299-326.

[2] A. WaLD, On the Principles of Statistical Inference, Notre Dame, Ind., 1942.

[3] J. NEYMAN AND E. PEARSON, T'ransactions of the Royal Society, A., Vol. 231 (1933), p. 295.
[4] H. HoTrELLING, Annals of Math. Stat., Vol. 2 (1931), pp. 360-378.



