AN INEQUALITY FOR DEVIATIONS FROM MEDIANS

BY JOHN W. TUKEY

Princeton University

In a recent note in these Annals, Birnbaum and Zuckerman [1] proved that if:

(1) X_1, X_2, \cdots, X_n are independent random variables with the same
distribution (i.e., form a sample),
(2) their common distribution is symmetric about zero,

then

$$E(|X_1 + X_2 + \cdots + X_n|) \geq \varphi(n) \cdot E(|X_1|),$$

where

$$\varphi(2k + 1) = \varphi(2k + 2) = \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2k + 1)}{1 \cdot 2 \cdot 4 \cdot 6 \cdots (2k)}.$$ \[1\]

It is the purpose of the present note to extend this to the following, more
general, result:

Theorem. If

(i) X_1, X_2, \cdots, X_n are independent random variables,
(ii) the median of each X_i is zero,

then

$$E(|X_1 + X_2 + \cdots + X_n|) \geq \frac{\varphi(n)}{n} E(|X_1| + |X_2| + \cdots + |X_n|).$$

It will be convenient to let $d_i = E(|X_i|)$ and

$$d = \frac{1}{n} \sum d_i = \frac{1}{n} E(|X_1| + |X_2| + \cdots + |X_n|),$$

so that the desired inequality becomes

$$E(|X_1 + X_2 + \cdots + X_n|) \geq \varphi(n) \cdot d.$$

Define e_i by

$$e_i = \int_0^\infty x dF_i(x),$$

where $F_i(x)$ is the cumulative distribution function of X_i. Since

$$d_i = E(|X_i|) = -\int_0^\infty x dF_i(x) + \int_{\infty}^0 x dF_i(x),$$

with $d_i = E(|X_i|) = \frac{1}{n} \sum d_i = \frac{1}{n} E(|X_1| + |X_2| + \cdots + |X_n|),$

...
it follows that
\[\int_0^\infty x dF_t(x) = e_t - d_t. \]

The basic idea of the proof, which is common to both notes, is to divide the \(n \)-dimensional space of \(x_1, x_2, \ldots, x_n \) into its \(2^n \) "octants," break up the expectation of \(|X_1 + X_2 + \cdots + X_n| \) into the corresponding parts, and apply elementary inequalities. Let \(O_s \) be the octant in which a set \(S \) of variables are \(\leq 0 \). From (4), (5) and hypothesis (ii) it follows that
\[2^{n-1} \int_{O_s} \cdots \int x_i \prod dF_i(x) = \begin{cases} e_i, & \text{if } x_i \geq 0 \text{ in } O_s, \\ e_i - d_i, & \text{if } x_i \leq 0 \text{ in } O_s. \end{cases} \]

Hence
\[2^{n-1} \int_{O_s} \cdots \int \sum x_i \prod dF_i(x) = \sum_{i=1}^n e_i - \sum d_i = e - \sum d_i. \]

where \(e = \sum e_i \), and the second and third sums are over all \(d_i \) for which \(x_i \leq 0 \) in the chosen octant \(O_s \). The contribution of the octant \(O_s \) to \(E(|X_1 + X_2 + \cdots + X_n|) \) is
\[\int_{O_s} \cdots \int |\sum x_i| \prod dF_i(x) \geq \left| \int_{O_s} \cdots \int (\sum x_i) \prod dF_i(x) \right| \]
\[= 2^{-(n-1)} |e - \sum d_i|. \]

For each value of \(s \), there will be \(\binom{n}{s} \) octants with \(s \) variables \(\leq 0 \). The sum of their contribution to \(E(|X_1 + X_2 + \cdots + X_n|) \) is
\[I_s = \frac{1}{2^{n-1}} \sum |e - \sum d_i| \geq \frac{1}{2^{n-1}} \binom{n}{s} e - \left(\binom{n}{s} - 1 \right) \sum d_i, \]
where the inequality follows from \(\sum |a_s| \geq |\Sigma a_s| \), and it is noticed that each \(d_i \) occurs in \(\binom{n-1}{s-1} \) different inner sums. Recalling that \(\Sigma d_i = nd \), this may be written
\[I_s \geq \frac{1}{2^{n-1}} \binom{n}{s} |e - sd|. \]
Finally,
\[E(|X_1 - X_2 + \cdots + X_n|) = \sum_{i=0}^{n} I_i \geq 2^{-(n-1)} \sum_{i=0}^{n} \binom{n}{s} |e - sd| \]
\[\geq 2^{-(n-1)} \sum_{2s < n} \binom{n}{s} (|e - sd| + |e - (n - s)d|) \]
\[\geq 2^{-(n-1)} \sum_{2s < n} \binom{n}{s} (n - 2s)d, \]
where the last inequality follows from \(|a| + |b| \geq b - a\). To complete the proof, it is only necessary to evaluate the last sum. One method of evaluation may be found in Birnbaum and Zuckerman’s note.

If each \(X_i = \pm 1 \), each with probability one-half, then all of the inequalities of the proof become equalities. So that, in this case,
\[E(|X_1 + X_2 + \cdots + X_n|) = \varphi(n) \cdot d. \]

Since the limiting distribution in this case is a normal distribution with standard deviation \(n^2 \) and \(E(|X_1 + X_2 + \cdots + X_n|) = (2n/\pi)^{1/2} \), it follows that this is the asymptotic value of \(\varphi(n) \).

The inequality of the theorem is only efficient when the \(E(|X_i|) \) are of nearly the same size. In other cases it can often be usefully supplemented by the

Lemma. If

(i) \(X_1, X_2, \ldots, X_n \) are independent

(ii) for each \(i \), either \(X_i \) has median zero, or the sum of the means of the other \(X_j \) is zero (this is implied by either (a) the median of each \(X_i \) is zero, or (b) the mean of each \(X_i \) is zero), then

\[E(|X_1 + X_2 + \cdots + X_n|) \geq \text{Max } E(|X_i|). \]

The lemma follows from the case where \(n = 2 \), by applying that case to

\[Y_i = X_{i_0}, \quad Y_2 = \sum_{i \neq i_0} X_{i_0}, \]

where the maximum of \(E(|X_i|) \) is attained for \(i = i_0 \).

The special case follows from the inequality

\[|x_1 + x_2| \geq |x_1| + x_2 \cdot \text{sgn } x_1, \]
since this implies

\[E(|X_1 + X_2|) \geq E(|X_1|) + E(X_2) \cdot E(\text{sgn } X_1) = E(X_1) \]

using first (i) and then (ii).

In conclusion, it is interesting to note that the mean cannot replace the median in the hypothesis of the theorem. For let \(X_1, X_2, X_3 \) be independent,
and take the values 1 (with probability 2/3) and -2 (with probability 1/3).
$X_1 + X_2 + X_3$ takes the values 3 (with probability 8/27), 0 (with probability
12/27), -3 (with probability 6/27) and -6 (with probability 1/27). Hence
$E(|X_1|) = 4/5$, and $E(|X_1 + X_2 + X_3|) = 48/27 = 16/9 = 4/3E(|X_i|)$,
which is not $\geq 3/2E(|X_i|)$.

REFERENCE

ON THE INDEPENDENCE OF THE EXTREMES IN A SAMPLE

BY E. J. GUMBEL

New School for Social Research

In a previous article [1] the assumption was used that the mth observation in
ascending order (from the bottom) and the mth observation in descending order
(from the top) are independent variates, provided that the rank m is small com-
pared to the sample size n. In the following it will be shown that this assump-
tion holds for the usual distributions.

Let x be a continuous, unlimited variate, let $\Phi(x)$ be the probability of a value
equal to, or less than, x; let $\varphi(x)$ be the density of probability, henceforth called
the initial distribution. The mth observation from the bottom is written $m x$
and the kth observation from the top is written x_k. Thus, the bivariate dis-
tribution $w_n(m x, x_k)$ of $m x$ and x_k, is such that there are $m - 1$ observations less
than $m x$; $k - 1$ observations greater than x_k and $n - m - k$ observations between
$m x$ and x_k.

For simplicity's sake write

$$
\Phi(m x) = m \Phi; \quad \Phi(x_k) = \Phi_k.
$$

$$
\varphi(m x) = m \varphi; \quad \varphi(x_k) = \varphi_k.
$$

Then

$$
w_n(m x, x_k) = C_m \frac{m - 1 - m \varphi(\Phi_k - m \Phi)}{n - m - k} \varphi_k(1 - \Phi_k)^{k-1},
$$

where

$$
C = \frac{n!}{(m - 1)!(k-1)!(n - m - k)!}.
$$

In the expression (1) no assumption about dependence or independence of $m x$
and x_k is implied except that these values are taken from the same population.

The distribution (1) is now modified by introducing three conditions. First,

1 Research done with the support of a grant from the American Philosophical Society.