DISTRIBUTION OF SAMPLE ARRANGEMENTS FOR RUNS
UP AND DOWN

By P. S. OLMSTEAD
Bell Telephone Laboratories, Inc.

1. Summary. Using the notation of Levene and Wolfowitz [1], a new
recursion formula is used to give the exact distribution of arrangements of n
numbers, no two alike, with runs up or down of length p or more. These are
tabled for n and p through n = 14. An exact solution is given for p > n/2.
The average and variance determined by Levene and Wolfowitz are presented
in a simplified form. The fraction of arrangements of n numbers with runs
of length p or more are presented for the exact distributions, for the limiting
Poisson Exponential, and for an extrapolation from the exact distributions.
Agreement among the tables is discussed.

2. Introduction. Assume that
X1, T2, **° Ty

represent a series of repetitive measurements. In engineering work, experience
has shown that, when the values of these measurements exhibit changes in level,
trends, cycles, etc., it is usually indicative of the presence of findable causes.
In general, the engineer becomes more confident that a findable cause exists
for a change in level, a trend, or a cycle, when the change is large, the trend is
long, or the cycle is regular.

On the basis of this experience, the engineer selects particular measures of
change in level, length of trend, etc., to guide him in deciding when it is profitable
to look for a cause. Having selected the measure, he is interested in knowing
how often he may have to look for a cause that does not exist. One such measure
is the length of the longest run up or down in a sample of n values. The chart
in Figure 1, based on the analysis given here, applies when no two values are
alike and indicates the fraction of all nonidentical arrangements that have
runs up or down of length p or more.

Attention is directed to the distribution of sample arrangements that have at
least one run up or down of length p or more. The distribution and the vari-
ances and covariances for lengths of runs up and down are given by Levene and
Wolfowitz [1]. In addition, Wolfowitz [2] has shown that the limiting distribu-
tion for a particular length of run up or down is a Poisson Exponential.

The notation of Levene and Wolfowitz [1] will be used. Thus, let a, a.,

-, a, be n numbers, no two alike, and let the sequence S = (hy, ha, -+, hy)
be any permutation of a1, a2, : -, a,, where S is to be considered a chance
variable, and each of the n! permutations of a; , az, - - -, a, is assigned the same

24

&

; J%

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @%J%
The Annals of Mathematical Statistics. KON

WWWw.jstor.org



RUNS UP AND DOWN 25

probability. Consider the derived sequence R whose ith element is the sign
(+or —=)of hyyr — hi,(t=1,2, --- ,n — 1). A sequence of p consecutive -+
signs immediately preceded by a — sign is called a run up of length p or more;
a sequence of p consecutive — signs immediately preceded by a + sign is called
a run down of length p or more. When such a run is both immediately preceded
and immediately followed by an unlike sign, it is a run of length exactly p.
The distribution of arrangements with at least one run up or down of length
p or more is considered under five specific headings:
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1. An exact numerical solution for n small, i.e., computations have been
completed up to and including n = 14.

2. An exact solution for p > ;

1
(—p—j_n—l—)—' constant.

3. A limiting solution for

4. An extrapolation from 7 small.
5. Constant probability relationships.

3. Solution for n small. Starting with a single number, a, , a second number,
a: > ap, may be placed before or after it to obtain the two independent arrange-
ments of one run of length exactly 1. A third number, a; > az > a1, may be
placed before, between, or after the preceding pair to obtain two independent
arrangements of one run of length exactly 2 and four of two runs of length ex-
actly 1. Continuing this process it is seen that, on the assumption that the
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distribution of independent arrangements for (n — 1) numbers, a1 < a; < a3 <

< @p-1, is known, the distribution of independent arrangements for n
numbers, a; < a2 < a3 < -+ < @y, can be found by using the following re-
cursion formula:

F»[rn—ly Ta2y 5 Thy =5y Tiy 200, Tjy 200y, 7‘1]

n—1

= 22 (remt + DF pslrnsg, Tag, oo, (e — 1), (e + 1), <+ 1

+ 2Fn—l[rn-2 ) T3, *°°, (rl - 1)]

1 n—3 i1
@ +22 2 (m+1)

=2 j=1

*Faalras, ooy Mhmigg + 1), ooy (e = 1), 00, (= 1), -+ -, (1 — 1)]
n—3
+ Z} (rn+ DFnalrn-g, ooy hete+ 1), <2+, (ri = 2), -+ (n — 1)]

where 7; , etc., represents the number of runs either up or down of exactly length

1 in each arrangement of the n numbers designated F,, ,

(2) =i =1, the total number of runs having lengths exactly 7 (from
1 to n — 1) for each arrangement included in F,,

(8) =iir; = n — 1, that is, the sum of the lengths of all such runs in any
arrangement is one less than the total number of
numbers,

Fn[rn——-lyrn—2, e TRy ety T, e, T, ...’1'1]’

the total number of nonidentical sequences of the n
numbers with exactly r,_; runs-of length exactly (n — 1),

- 1 runs of length exactly A, --- 7; runs of length
exactly ¢, - -+ r; runs of length exactly j, - -+ 7 runs of
length exactly 1. Some of these r’s are of course zero
and their sum is that given in (2) above. Similar
statements apply to the four F,_’s.

In the last two summations in (1), when r; = r, (r; — 1) combines with
(ry — 1) to give (r, — 2), and when r; = r, (r; — 2) combines with (r; — 1) to
give (n — 3). , ‘

By using the above recursion formula, the exact number of arrangements with
at least one run up or down of length p or more has been computed for n = 2
to n = 14, inclusive. This information is given in Table 1. In addition, it
has been used to determine the probabilities of arrangements with runs up or
down of length p or more as shown in Table 2. These tables provide a useful
background for the limiting expressions considered in the next three sections.
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n n
4, Solution for p > 2° When p > 27 it is clear that no sequence can contain

more than one run of length p. Thus, the expected number of runs of length
p or more in an arrangement is also the probability that an arrangement contains
runs of length p or more. Writing Levene and Wolfowitz’s [1] expression (4.2)
in the simplified form previously published [3], we have

2[(n — p)p + 1) + 1] n
@+ 91 for 5

where 7, represents the number of runs of length p or more. This expression
checks exactly with Table 2 over the range to which it applies.

“) P(ry) = E(ry) = <p<n,

6. Solution for (—1—’—_%———1)! = constant. As mentioned above, Wolfowitz [2]

has shown that the limiting distribution for runs up and down is a Poisson
Exponential. His proof applies specifically to the distribution of runs of length
exactly p. However, the assumptions made in his derivation could have been
applied to the distribution of runs of length p or more and would have led to
identical conclusions for such runs. To see how closely this is approximated,
it is possible to throw expression (4.17) for the variance of (r}) derived by Levene
and Wolfowitz [1] into the following simplified form:

20l = {2[(n -p)p+1) +1] [1 _2(p+ 1)°[6p" + 7(p — 1)
? (» + 2)! (p+2)1(2p+3)(2p + 1)

_4(p+2) !] [(p + 1I2p + 3)p(p — 1) — 6]
(2p + 3)! pl(p 4+ 2)!(2p + 3)(2p + 1)

2(p+1)2+1]}, p [ 3 pz] 1[1 1]
= ___ |y =[E(r 1-=—- " | — + —|.
T@rar I I T el talon T @

Thus, ¢*(r},) is equal to E(r;,) within one part in one thousand for p > 7 and it is
apparent that the first two moments approximate those of a Poisson Exponen-
tial. Making use of this information, it is possible to prepare Table 3, which

gives approximate values of the probabilities of arrangements with runs of
length p or more based on

()

—E(r}, —©2[n— 1)+1 2)1
(6) P(r;) =1 e B(ry) =1—c¢ @[n—p) (p+1)+1])/ (p+ )..

Comparison of Tables 2 and 3 shows agreement to closer than .0001 for p > 6,
.001 for p > 5, .01 for p > 4, and .1 for p > 3 when n < 14. Similarly, the
agreement for p = 1 is within .1 at n > 4, within .01 at n > 8, within .001 at
n > 11 and .0001 at n > 14; the agreement for p = 2 is within .1 at n > 10.
Possible agreement beyond n = 14 is of course subject to conjecture. However,
it may be observed that the maximum difference for a given value of p was re-
duced from .2679 at n = 2, p = 1 to .1691 at n = 6, p = 2 indicating that
closer agreement may be expected as p is increased.



RUNS UP AND DOWN 29

6. Extrapolation from the exact solution for n small. Since the exponential
in equation (6) may be written in the form:

(7) e—(2l(n—p)(p+1)+l])l(z7+2)! = e(2lp(p+l)~1])l(p+2)! . e—(zn(p+1))/(p+2)!

it follows that:

!
®) 1 = Puna(rp) _ ~cormioon
1 - P n(r;)
] TABLE 3
Fraction of Arrangements of n numbers with Runs of Length p or More Based on Poisson
Ezponential
N\
1 2 3 4 5 6 7 8 9 10 >10
n N\
2 | .7321 | .0800
3 | .8111 | .2835 | .0165
4 | .9030 | .4220 | .0800 | .0028
5| .9502 | .5654 | .1393 | .0165 | .0004
6 | .9744 | .6615 | .1949 | .0301 | .0028 | .0001
7 | L9869 | .7364 | .2467 | .0435 | .0052 | .0004 | .0000
8 | .9933 | .7947 | .2953 | .0567 | .0075 | .0007 | .0001 | .0000

9 | .9965 | .8401 | .3408 | .0697 | .0099 | .0011 | .0001 | .00C0 | .0000
10 | .9982 | .8742 | .3833 | .0825 | .0122 | .0014 | .0001 | .0000 | .0000 |.0000
11 | .9991 | .9030 | .4230 | .0952 | .0146 | .0018 | .0002 | .0000 | .0000 |.0000 |.0000
12 | .9995 | .9244 | .4603 | .1076 | .0169 | .0021 | .0002 | .0000 | .G00C |.0000 |.0000
13 | .9997 | .9412 | .4951 | .1200 | .0193 | .0025 | .0003 | .0000 | .0000 |.0000 |.0000
14 | .9999 | .9542 | .5276 | .1321 |..0216 | .0028 | .0003 | .0000 | .0000 |.0000 |.0000
15 | .9999 | .9643 | .5581 | .1441 | .0239 | .0032 | .0004 | .0000 { .0000 |.0000 |.0000

20 |1.0000 | .9898 | .6834 | .2015 | .0355 | .0049 | .0006 | .0001 | .0000 |.0000 |.0000
40 «“ .9999 | .9165 | .3952 | .0803 | .0118 | .0015 | .0002 | .0000 |.0000 |.0000
60 «“ 1.0000 | .9780 | .5419 | .1231 | .0186 | .0023 | .0003 | .0000 |.0000 |.0000

80 «“ “ .9942 | .6530 | .1639 | .0254 | .0032 [ .0004 | .0000 |.0000 |.0000
100 “ “ .9985 | .7371 | .2030 | .0322 | .0041 | .0005 | .0000 |.0000 |.0000
200 “ «“ 1.0000 | .9345 | .3717 | .0652 | .0085 | .0010 | .0001 |.0000 |.0000
500 «“ “ «“ .9990 | .6924 | .1577 | .0215 | .0024 | .0002 [.0000 |.0000

1000 «“ “ «“ 1.0000 | .9065 | .2919 | .0428 | .0049 | .0005 |.0000 |.0000
5000 «“ «“ «“ “ 1.0000 | .8234 | 1976 | .0245 | .0025 |.0002 |.0000

showing that consecutive values of 1 — P(r}) are related by a constant of pro-

portionality dependent only on p. Since this is true in the limit, Table 2 was

examined to determine similar multipliers for extrapolation. The results of

this examination are shown in Table 4 together with the values of (8). This
’

table shows that the agreement between the value of II_PT"‘L(IT(Z“)’)
- n\’' p

becomes closer the larger the value of p. The con-

forn = 12,

= 2)!
e.g., and ¢HPTV @D
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stancy of the ratio for a given value of p is such as to permit calculation of
probabilities for any value of n to a minimum of three or possibly four decimal
places. Such calculations have been made and recorded in Table 5. The fol-
lowing formulae' were used for these calculations:

P,.(T{) = 1
Py(ry) =1 — (.00437364)(12—")”‘“

9) Pu(rs) = 1 — (45093729)(.92404)"*
P.(r) = 1 — (.87587019)(.98561)" "
P.(rs) = 1 — (.98060695)(.99760)"*
Pa(rs) = 1 — (.99752014)(.999652)"*
or in general
(10) Pu(ry) = 1 — [l — P, (rp)][Constant,]" ™
Comparison of Table 3 with Tables 2 and 5 shows that the difference for given
p and n has a maximum for each value of p and that this maximum decreases
with increase in p. The maximum values of the difference shown in the tables
are:p=1,n = 2,.2679;p = 2,n = 6,.1691; p = 3,n = 20, .0572;p = 4,n = 80,
0154; p = 5,n = 500, .0033; and p = 6, n = 5000, .0007. Thus, it is apparent
that the agreement beyond p = 6 should be within .0001 and the method of
Section 5 used for Table 3 is satisfactory for these probabilities.
7. Constant probability relationships. From Tables 2, 3 and 5, it is pos-
sible to make interpolations for the values of n required to have a probability of

at least P(r},) that an arrangement will have a run of length p or more. When
the conditions of Section 5 apply, the value of n is, of course:

—p__ Lt _pt+2 _
(11) n=7p | —— pllog. [1 — P(ry)l.

2
! It will be noted that the constant for p = 2 has been taken to be — , whereas the last value
kg
shown in Table 4 is .63661959. However, alternate values in this series are converging.

2
Comparing these subseries shows that by n = 16, the values would agree with — to eight

2
decimal places. An analytic proof that — 1s the hmltmg value of the constant has recently

been found by J. W. Tukey.
While reading the manuscript J. Riordan observed that the number of arrangements
with longest length 1, say f(n, 1) has the generating function

Z f(n, 1) —:ﬁ = 2(sec t + tan )

hence is twice the Euler number for n even and twice the tangent number for n odd, a result
given essentially by Netto [4]. These observations lead directly to the limiting value,

2
—noted above.
k.
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TABLE 5

Fraction of Arrangements of n Numbers with Runs of Length p or More Based on
Ezxtrapolation with Extrapolation Constant

\ 1 2 3 4 5 6
n
14 1.0000 .9954 .5833 .1367 .0217 .0028
15 « .9971 .6150 .1492 .0241 .0032
20 « .9997 .7406 . 2086 .0358 .0049
40 « 1.0000 . 9466 .4078 .0810 .0118
60 « « . 9890 .5568 .1241 .0187
80 « ¢« L9977 .6684 .1652 .0255
100 « « .9995 L7518 .2044 .0322
200 “ « 1.0000 L9418 .3743 .0653
500 « «“ “ .9992 .6957 .1580
1000 ¢« « ¢« 1.0000 .9085 .2925
5000 «“ « ¢« ¢« 1.0000 .8241
TABLE 6

Sample Size for Constant Probability Based on Poisson Exponential

1 2 3 4 5 6 7 8

N

<.99 7 20 71 335 | 1939 | 13268

<.95 5 13 47 | 219 | 1263 | 8633

<.90 3 10 37 169 971 | 6637

<.10 0 2 4 11 49 | 309 | 2296

<.05 0 1 3 7 26 153 | 1170 | 10350

<.01 0 1 2 4 9 34| 235 | 2036
TABLE 7

Sample Size for Constant Probability Based on Extrapoldtion

\; 1 2 3 4 5 6
> ,
<.99 — 12 61 321 1923 13239
<.95 — 8 40 210 1253 8614
<.90 — 7 32 162 964 6622
<.10 — 2) 4 11 48 308
<.05 — (2) 3) 7 26 153
<.01 — @) 3) 4) 9 34
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Similarly, it may be obtained from the extrapolatiorr formulae of Section 6
in the form:

lOg [1 - Pn(r;)] - IOg [1 - Pno(r;)]

(12) n=m+ log [Constant,]

Results of computations based on (11) and (12), are given in Tables 6 and 7,
respectively for particular values of P(r,). It will be noted that Table 7 is in
exact agreement with Table 2 and that it differs but little in a practical sense
from Table 6.
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