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1. Summary. It is shown that certain monomials in normally distributed
quantities have stable distributions with index 27*. This provides, for k > 1,
simple examples where the mean of a sample has a distribution equivalent to
that of a fixed, arbitrarily large multiple of a single observation. These examples
include distributions symmetrical about zero, and positive distributions.

Using these examples, it is shown that any distribution with a very long tail
(of average order > z~*?) has the distributions of its sample means grow flatter
and flatter as the sample size increases. Thus the sample mean provides less
information than a single value. Stronger results are proved for still longer
tails.

2. Introduction. This paper derives and exploits certain elementary ex-
pressions for stable distributions. The practicing statistician may be inter-
ested in the general discussion of results, going as far as Section 5. The reader
interested in probability theory may be interested in

(i) the simple monomials in normally distributed quantities which are

shown to be stable (Section 7)

(ii) the resulting bounds on the densities of these stable distributions

(Section 8)

(iii) Theorem A, which forms a partial converse to the Central Limit

Theorem.

It should be pointed out that examples of stable chance quantities arising from
infinite series (Khintchine 1937, [2], [3]) and integrals (Levy 1935, [4]) are already
known. These results form a natural part of broader investigations into
(i) the relative value of the mean, the median, and their competitors
(ii) the properties and distributions of simple functions of normally dis-
tributed quantities.

3. Stable distributions. One of the typical properties of the normal dis-
tribution with zero mean is that the distribution of the mean of a sample of n
has the same shape but is compressed by the factor v/n. The Cauchy dis-
tribution is well-known for the property that the mean of a sample of n has
the same distribution as a single observation.

Statisticians have not widely appreciated the fact that there are symmetric,
smooth distributions for every positive N < 2, with the property that the dis-
tribution of the mean of a sample of n has the same shape as the original dis-
tribution but is spread out in the ratio n®™™. These are the symmetric stable
distributions of index A\.

It is interesting to note that if A = .001, then the mean of a sample of two
is 2°* times as variable as the mean of a sample of one. For small \ the means
become unduly variable with a rapidity which is difficult to comprehend.
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4. Outline of results. Section 7 is devoted to the proof that certain mono-
mials in normal variables are stable of index 27 for integral k. Both symmetri-
cal and positive cases are shown to exist. For &k = 0, the symmetrical case is
the familiar Cauchy distribution, which is the distribution of Student’s “¢”’
on one degree of freedom, while the positive case for £ = 1 is the distribution
of Snedecor’s “F”’ on « and 1 degrees of freedom.

In Section 8 it is shown that the symmetrical stable distribution of index A\
has a density which is

(i) bounded by a constant
(ii) bounded by a constant times |z |7, for the values A = 1, &, 1 1

..+, for which elementary examples are available. It is conjectured that

this is true for all A < 2.

In section 9 it is shown that, if a distribution has one long tail in the sense that

(1.1) im [z Pz < X <z + h} >0,
for some h and one of the above values of A (the lim may be taken either as
z — -+ or as x — — ), then the distribution of the sum of a sample of n
spreads out as fast as for a stable distribution with the same value of \. This
may be restated for the mean as follows:

() A distribution has a long tail of order |z [""™ 4f (1.1) holds for some

h > 0 and choice of sign for x.
(ii) If the distribution has a density f(z), then (1.1) is a consequence of

A
1.2) flx) > TF o A>0.

(iii) The distribution of the mean of a sample of n will be said to spread out
as fast as n®, if the distance between any two percentage points for the mean of a
sample of n is ultimately larger than a fixed multiple of n*.

(iv) TaeoreEM A. If the distribution of X has at least one long tail of order
| z I‘““‘), where N = 1, 3, %, - -+, then the distribution of the mean of a sample
of n values of X spreads out as fast as n@M,

Section 10 presents a simple example of a distribution symmetric about zero
with such long tails that

(i) the distribution of the sample mean spreads out faster than any power
of n,

(i1) the median of a sample of any ‘'size fails to have finite moments of
positive order, integral or fractional.

5. Consequences for applied statistics. The basic consequences of these
results for applied statistics can be summarized in the following statements.

(a) The positions that the Cauchy distribution is an isolated case, or else
an extreme example of pathology, are now untenable.
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(b) The use of the mean of a sample as a measure of location (or, when
dealing with positive distributions fixed at zero, as a measure of scale) im-
plies a belief that the tails of the underlying distribution are not too long.

(¢) It is probable that the relative efficiencies of mean and median are
greatly affected by the length of the tail.

The importance of this last statement lies in the fact that direct empirical
evidence about tail length is very hard to obtain. The mean is well known
to be more efficient when the underlying distribution is normal. Normality of
the tails of practical distributions is rarely based on firm empirical evidence.
In these practical cases, greater efficiency of the mean should often not be
assumed without empirical confirmation.

It may be argued that the results of this paper apply to the limit as n — o«
and to the behavior of the distribution near infinity, while the practical problems
involve moderate values of n and the behavior of the distribution near its 5%,
1%, 0.1%, 95%, 99%, and 99.9% points. This is undoubtedly true, but the
authors believe, and have some evidence to confirm, the following correspon-
dence principle:

If certain mathematical tails imply certain asymptotic behavior, then
similar practical tails imply similar behavior in moderate samples.

Here “mathematical tails” refers to behavior at infinity while practical tails
run from the 5%, to the 0.1%, point and from the 95%, to the 99.9%, point.

It is of some interest to point out that Snedecor’s “F” provides applications
of Theorem A. If N values of F are averaged, where éach was obtained on,n,
and n, degrees of freedom, then as N increases

(i) if ns > 2, the average converges to 1 (i.e. all percent points converge
to 1), by the Central Limit Theorem

(ii) if np = 2, the percent points of the average stay a finite distance away
from each other, by Theorem A

(iii) if n, = 1, the percent points of the average separate from each
other at least as fast as a constant times \/N, by Theorem A.

The consequences of Theorem A follow from the asymptotic density of F,
which is a constant times F'#"2,

6. Notation and terminology. Chance quantities (random variables)
will be denoted by capitals and their values by lower case letters. The same
letter will generally be used, so that x will frequently be a value of X.

The letter S, with or without indices, represents a standard deviate (nor-
mally distributed quantity with zero mean and unit variance). Unless other
wise specified all sets of chance quantities will be assumed to be independent.

Cumulative distribution functions will be referred to simply as “cumulatives”
and will be denoted by capitals. Probability density functions will be referred
to as ‘‘densities” and will be denoted by the corresponding lower case letters.

The convolution of two cumulatives F and @ will be denoted by FxGQ. Tt is
the enmulative of sums of two independent values, one from each distribution.
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7. Special stable distributions. Cauchy (1853, [1]) recognized that dis-
tributions with characteristic functions of the form

—a| ul?
€

were stable. A distribution is stable if whenever k and ! are positive and A
and B are independent chance quantities distributed according to the same
law, then kA + [B is distributed like a fixed multiple of A. It is known (Lévy
1937, [5], pp. 94 ff.) that any stable distribution has a characteristic function
of the form

—(a+ifsgnu)| uld
(2 b

where 0 < A < 2, a > 0,and |B| < |atan 37A|. Each stable distribution
thus has an index X such that k4 + IB and (" + I")'*4 have the same dis-
tribution when A and B are a sample of two from the given distribution.

This section exhibits, for every integral k, simple monomials of standard
deviates which have stable distributions of index 27*.

(7.1) Tureorem: Let S, Sy, Si, Sz, -+ be a sequence of independent standard
deviates. Then
1) Co = S/Sp and Py = 1
are stable of index 1 = 27°.
(i) C1 = 8/88i = Co/S; and Py = 1/8t = Py/ S}
are stable of index 3 = 27",
(i) C; = 8/SuSISE = Ci/8%
and P, = 1/8:8¥ = P,/S%
are stable of index 3 = 27°.
(iv) in general, Cr = Ci1/SE and Py = Pi_y/SE

are stable of index 27",

The C) are a sequence of symmetrically distributed chance quantities which
are here presented as monomials in normally distributed chance quantities and
whose stability properties imply for k¥ > 1 that the distributions of means of
samples spread out as the sample size increases. The P; are a similar sequence,
all of whose values are positive.

The stability properties of the C, follow, directly, by means of elementary
composition properties of characteritic functions, from
(7.2) Lemma: The characteristic function of Cy is

E(e") = exp(—2| 3t ).

Proor: The case k = 0 is the familiar Cauchy distribution. Denoting the
normal cumulative by N(s), it is seen that

E(¢°) = f_ : [:e‘"“" AN (s) dN (so)

]

[ o (—3/s) an e

é‘“' ]
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The second definite integral is well known (e.g. Formula 495 in B. O. Pierce’s
table). Assuming the result for k—1, write

E("*) = [: [: exp (iCh-1/8) dF41(Chs) N (s1)

= [ exp (=21 3P™/sh) aN s

=exp (—2 |37,

precisely as in the derivation for k£ = 0.

The stability properties of the P follow, by completely analogous use of
the moment generating function, from
(7.3) Lemma: The moment generating function of Py is

E(e™) = exp(—2(30)""), t > 0.

Proor: The trivial case k = 0 is verified directly, since Py = 1. The induction
from k—1 to k is identical with the derivation of (7.2), as is seen by writing

E(e—“’k) = [: f: exp (—th_l/S:k) dGr—1(Px) dN(sk)

0

= [ exp (—260"™"/sh) av(ss)

= exp (—2(3)") .

In order to verify the stability properties, consider distributions with char-
acteristic functions of the form exp(—d|¢[). If A and B are independently
distributed according to this distribution, then

E(e“(“"'mm) — E(eitlA)E(eith) - e-—l(l\+m")|tl)‘
for I, m > 0. Parallel application of the moment generating function yields
precisely analogous results.

8. Some auxiliary results. It is the purpose of this section to establish
some results concerning stable distributions. It will be convenient to state
and prove some of these lemmas in general form.

(8.1) Lemma: If X has a density f(z) satisfying

f@) < A= [

then X has finite negative moments of orders doun to —(1—a).
ProoF: If —(1—a) < 8 < 0, then |

|2 |%f@) < Al ™",
with —a+8 > —1. Now

[: |2 f(z) dz < [:f(x) do + E |z f(z) do + fl " f@) da

0 1
< [ @it [ Alsa < o,

which proves the lemma.
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(8.2) LemmA: If X has a density f(x) satisfying
f@ < Alz[™"

and if Y has a density g(y) and a finite negative moment of order — (1—a), then
the density h(x) of XY satisfies

h(z) < Ay |z I_a~
Proor: The density h(zx) satisfies

hw) = [ (e/ieyIe])
< [ Aleriar oot a

= {[:A 179 g(2) dt} |z = A ]z|™.

(8.3) LEMMA: The density hi(y) of
Yi = S(S)%8)™ -+ (S0,
where, S, S1, Sz, - Si are independent standard deviates, satisfies
() < Aly 7,

and hence Y, has finite negative moments of all orders down to —27,
Proor: Let gi(xz) be the density of

Xi = (S0,
then
gu(@) = (2m) 2 Fexp(— 42",
whence
gi(@) < Ar|z [T

For k& = 0 this is the desired result; the other cases follow by induction, using
Yi = X Yi: and lemma (8.2). The final statement of the lemma then follows

from lemma (8.1).
(8.4) THEOREM: For X = 27%, the density ma(z) of C satisfies

(*) mx) <Az |‘(1+2‘f°> = Az,
and also
**) m@) < A,.
Proor: By definition, C;, = S/Y. By lemma (8.3) the density of ¥ satisfies
hiy) < Ar]y |75
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The density of 1/Y; satisfies

L) = Elahk(l/z)

< 2P Ay 270 = Ay |20,

Since S has a finite moment of order 27%, it follows from lemma (8.2) that the
density of S/Y satisfies the des1red relation (*). Since S has finite moments
of all positive orders, so does S and therefore Yr. Thus 1/Y; has moments
of all negative orders, including —1. Since the density of S is bounded, lemma
(8.2) implies the same for S/Y; and hence for C;. This completes the proof
of the theorem.

9. Distributions with a long tail. The purpose of this section is to prove
(9.1) Tueorem: If D has a cumulative F(x) such that for some h > 0, either

F(x + h) — F(x) F(x 4+ h) — F(x)

lim —(1+N) > 0, or lim —(1+N) 07
T+ l 4 I F—>—0 l |
where X = 2 fork = 0,1,2, - -, and tf kn(a) Us the a-point (100« percent point)

of the distribution of sums of n independent values of D, then

hm K (oq) K (az)

nin

”

whenever a1 > oy .
We begin with some lemmas.
(9.2) Lemma: If

F(z) = BF'(z) + 1 — BF"(x), )
0 <8 <1
G(z) = BF'(z) + (1 — B)1(2), f

where F'(x) is a cumulative symmetric about zero and unimodal, F"'(x) is a cumula-
tive symmetric about zero, and 1(x) is the cumulative concentrated at zero (whence
F(z) and G(z) are cumulatives), and if F,(x) and G.(x) are the cumulatives of
sums of samples of n from F(x) and G(z) respectively, then

Fox) < Ga.(@), =z > 0,
F.(x) > G.(x), x < 0.
Proor: We begin with the case n = 2, where
Fy = GFF + 28(1 — QF*F" + (1 — pF"*F"
and
= BF*F 4+ 28(1 — B)F" + (1 — B)M.
The lemma will have been proved for n = 2 if we can show that
F'*F'"(z) < F'(z),z > 0,
F'*F"(z) > F'(z), z < 0.
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Now, if z > 0,

Frep(z) = [o F'(z — s) dF"'(s)
_ fow (F'(z — s) + F'(z + s)} dF"(s)

<2 fo " F@) dF(s) = F'(z),

where the first equality follows from the symmetry of F’, the inequality follows
from the unimodality of F’, and the last equality follows from the symmetry
of F””. The inequality is reversed if z < 0.

For general n,

F, = ;(Z)Bfk(l - ﬂ)n—k Fl’t*F,':—k’

G = ;(};)ﬁ"(l ~ A" Fi,

where Fj (the convolution of k copies of F’) is the cumulative for sums of %
independent values from F’, and Fy is similarly related to F”’. Since F; is
unimodal and symmetric and since F'n_j is symmetric, the same argument can
be applied term by term to complete the proof of the lemma. The requirement
that F”’ be symmetric could be replaced by the formally weaker condition that
Fy(0) = % for all k.

(9.3) Lemma: If

F(z) = BFov(2) + (1 — A)1(2), 0<8=1

where Foy(z) is the cumulative of Cr, with A = 27, and if K.(a) is as defined in
(9.1), then

lim 77 K,(a) = 8™ Koy(a),

where Koy(a) is the a-point for Fo,(x).
Proor: Let F, and F,, be the cumulatives of sums of n from F and F() re-
spectively, whence

Foyn(z) = Foy(n'™x).
Then ‘

R = Z(1)#a - 9™ Fon @)

= ;(Z)gka — B)" ™ Foy (k™ z).
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The characteristic function of (n8)'*z is

B() = ;(Z)ﬂ"u = 6)* exp(— | (ng) K

= EI;(Z)B"(I — B)"Fexp (- fT’;-i e,

where the characteristic function associated with F,(z) is exp(—d | ¢[*). Thus
we have to deal with
dk,
o - 7511)

where k& has a binomial distribution with mean ng8 and variance ng(1 — B),
so that k/nB converges stochastically to unity. This implies that

. Y Y A
llm E(e‘lt(nﬂ)ll 2) =.e—dlll

uniformly in every finite interval, whence (n8)" *X converges stochastically
to Ci, which completes the proof of the lemma.

(9.4) LeMMA: If the symmetric cumulative F(x) has a density f(x), and if constants
c1 and ¢y exist such that

f(x) > min (c1, ¢ |z [T4V),
where A = 1, %, %, %, -+, then, if a # 3,
lim [ ™K, (a) | > 0,

Proor: According to theorem (8.4) there are constants d, and d» such that the
density of Cx is bounded by min (dy, ds |z [""*). Hence

F(z) — BFoy (x)
1-28
is monotone wken 8 = min (c1/d:, ¢z/dz), and hence is a distribution function.
By lemma (9.2) the a-points of F lie outside those of ﬁFm (x) + (1 — B)1(z),

and these, by lemma (9.3), increase at least as fast as An~"
(9.5) LEMMA: If the density of D exists and equals f(x), and if either

lim | z|**1(z) > 0,
00

or
lim || f(z) > 0,

where N = 1,3, %, %, -+, then, for oy > a,
lim 2™ (K, (1) — Ka (@)} >0

n—+0



10 GEORGE W. BROWN AND JOHN W. TUKEY

Proor: Let D; and D, be independent with the distribution of D. Then
D, — D; has a symmetric density given by

0@) = [ s+ 95 6.

If
lim |z " 1) > 0,
Z—+4-00

then for suitable A and ¢ > 0,
f@) > €|z |7, for all z > h.
Therefore, for > 0, writing v = —(1 + 1)),

0@ 2 [ 1+ 05 2 Eh 1+ ol At 17 = by b+
Now
bi|b; + z|" > min {5:2'0], b:2"|z|"}
and hence, for z > 0 and suitable ¢; > 0, ¢; > 0,
9(=) = min {c1, ¢, | z |"}.
Since g(z) is symmetric, this is also true for z < 0. If

lim |z " f(z) > 0,

then a similar argument proves the same result.

Let K;,(a) be the a-point for the sum of n values of D; — D, and K.(a) be
the a-point for the sum of » values of D. The most elementary relation be-
tween these functions is

| K5, (3 &= 3an — 49" | < | Ku(ar) — Ko(as) |.

To see this, observe that the sum of a sample of n values of D, — D, is the
difference of the sums of two independent samples of n values of D, and that
there is a probability of (a1 — a)® that both. of these sums will fall between
Ku(a) and K.(a). Thus the intervals (— | K,(a) — Ka(az) |, 0) and (0,
| Kn(en) — K,(a)|) are each occupied by the difference with probability
> () — a)’. Since K;,(3) = 0, the relation follows. Hence, if a; > a,

m 7= MKo(a) — Ku(a)} > Mm 27K, (3 £ 3o — an)?)
and by lemma (9.4) applied to the distribution of D, — D, this latter lim jg
positive, which completes the proof of the lemma.

With the ground prepared, it is now possible to complete the
Proor or THE THEOREM: Let h be chosen so that

m |z "™ (F(z 4+ h) — F(z)) > 0.
z=++4-00
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This can always be done, if X is replaced by —X when necessary. Let U have
the uniform distribution on the interval (0, 1) and consider the variable D + hU.
This variable has a density given by

o(z) = F(x + h})l — F(x) ’

and, therefore,

im |z " g(2) > 0.

Z—>+400

Let K,(a) be the a-point for the sum of a sample of n values of D, and let K ()
be the a-point for the sum of a sample of n values of D 4+ hU. Since | AU | < h,
it follows that

| Ka(@) — Ku(a) | < nh.
Therefore, if 1/A > 1 and o4 > a3,

lim ™™ (K, () = Ka (o)) = Hmn™™ (K7 () — K7 ()},
and by lemma (9.5) the latter lim is positive.

The case of A = 1 requires a slightly more delicate argument. The sum of
a sample of n values of AU is asymptotically normally distributed, and hence
it is less than Agn}, for a suitable A, , with probability 8. Therefore

Kiaf) < KiaB) < Kule) + At

and the same process yields the desired conclusion.

10. A distribution with very long tails. A somewhat pathological example
is provided by the symmetric cumulative
N S
n® + |z|)’

1
n@+z])°=0

F) = z <G,

Fl) =1 —

which has the density

1
@ = EF T @+ oD

Since

lim |z |"™f(z) = «» forall X\ >0,

it follows from theorem (9.1) that the distribution of the sum of a sample of
n values of X spreads out faster than any power of n. The same must therefore
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be true of the mean of a sample of n. There is clearly no use in taking any
kind of mean of such a sample.

There will, of course, be something to gain by taking the median of a sample
of 2n 4 1, since the distribution of the median always shrinks together as
n — o, and whenever, as is true here, the density is finite and continuous
at the population median, the distributions of the sample medians shrink toward
the population median.

This does not prevent some pathology, however, since the cumulative for
the median of 2n 4 1 takes the form

o D (P} + PEG)),
where P(t) is a polynomial of degree n with no constant term. Thus, for large
negative values of z, the cumulative for the median is asymptotically
(2n 4+ 1)! 1
MY + 1 " {In(@ + |z])}"
and the corresponding density is asymptotically
2n 4+ 1in
) + Diln(e + |2} + |z ])

and it follows that the median has no moments of any positive order, integral
or fractional. This is true no matter how large the sample used!
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