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or returning to the original notation and retaining terms in 1/N,

1
3) r~r,°<1+-2-z-v>.
1 z,
It 2, is defined by 5= [~ 6™"*dt = p we know from [3] that
V2np | 24is — 1
Vn 3 n ’
Proceeding formally and retaining terms in 1/N we obtain
n\t T1p 4 + Sxf-a)
<x§> - (1 Van T Tw

and multiplying by the expression for r given by equation (3) we find the desired
expansion for A.

2
X5
) X1+

- _ ms |, 5xipg + 10

Recall that both ., and z;4 are readily obtainable from tables of the normal
curve; in fact, r,, is defined by

fo z1—-8
\—/l—ﬂ [_r“ el = v and ;4 is defined by ﬁ .[c et =1 — B.

A comparative table of approximate and exact values of A is given in Table 1+
From the table we see that for N = 800 the error is less than 1 in the 4th sig-
nificant figure, and for N = 160 the error is less than 1 in the 3rd significant
figure within the limits of 8 and v considered. The approximation will be less
exact for higher values of 8 and «.

REFERENCES

[1] A. WaLp anD J. WoLrowiTz, ‘“Tolerance limits for a normal distribution,” Annals of
Math. Stat., Vol. 17 (1946), pp. 208-215.

[2] C. M. Tuompson, “Tables of percentage points of the x* distribution,” Biometrika,
Vol. 32 (1941-42), pp. 188-9.

[3] HENrRY GoLDBERG AND HARRIET LEVINE, ‘“‘Approximate formulas for the percentage
points and normalization of ¢ and x2,”’ Annals of Math. Stat., Vol. 17 (1946).

THE PROBABILITY DISTRIBUTION OF THE MEASURE
OF A RANDOM LINEAR SET

By Davip F. Voraw, Jr.
Naval Ordnance Laboratory

1. Introduction. Consider a random sample 0n(2;, « « +, %) of n values of a
one-dimensional random variable x having cumulative distribution function
F(z). Let there be associated with each z an interval of length D centered at «
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(D a positive constant). Let S(0,) denote the random set which is the point-set
sum of the n intervals associated with 0, ; S(0,) is a set of one or more intervals.
Let S denote the measure of §(0,) (S is the sum of lengths of the intervals
composing S(0,)). Given F, n and D, what is the probability function of S?
This note contains a solution of the problem for F(z) = z, (0 < z < 1); the case

of F(z) = £ He ™ dt, (0 <2 < o; H>0),is also treated.

2. Sampling from a uniform distribution. Let y = S — D. The range of
yis 0 < y < m, where m denotes the minimum of 1 and (n — 1)D. Let x;,
- - -, T be the sample values arranged in increasing order of magnitude. Make
the transformation

Yo = M1

@.1) .
Yi = Tig1 — X5, (z=1,---,n-—1).

n—1
y can be expressed as ) m(y;, D), where m(y;, D) denotes the minimum of
fel

-1
yiand D. The probability function of (%o, %1, «**, Yn-1) is 7! ] dyu, (yu >0;
u=0

Y=0

-++,n — 1); for a fixed y, it can be shown by use of the Dirichlet integral that
the volume of the (n — 1) dimensional region in which any point (yo, %1, - **,
Yn-1) satisfies this condition is 1 — % (; fz" 1_) ' 1)D) . It follows that-

1—(n—1)D

Priy=(m-1D}=n[ = [l—g— (n— DD dy

Vom0

n—1
Ey.,ﬁl). Ifm =(n —1)D,theny = (n — 1)Difandonlyif y: > D, (s = 1,

2.2)
=[l-@-1D" (=n—1D<.

The probability that ¥ < y < Y 4+ AY (where Y < m and AY denotes an
arbitrarily small positive increment in Y) can be evaluated by determining
volumes of certain regions contained in the tetrahedron defined by y. = O,

n—1

> 4. < 1. Consider the following conditions:

u=0
(a) gDLY <(g+ 1)D (g=0,1, ---, M; M denotes the minimum
of (n — 2) and the greatest integer less

1
than D)’
(b) yﬂZD (u= 1, "')j;jSQ)7

(c)gyuﬁl—yo-y+ﬂ),
(d) Y, <D w=j34+1---,n—1).
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The probability that ¥ < y < ¥ + AY and that (b), (c) and (d) are satisfied is:

Y+AY -y dy
2.3) n! f,, _, B@ f Ay, o) dyo == )

where A ;(y, yo) denotes the j dimensional volume of the region in which any
point (y1, -, y,) satisfies (b) and (c), and B ,(y) denotes the (n — j — 2)
dimensional volume of intersection of the hyperplane E Yy, = y — jD with an

V=gt

(n — j — 1) dimensional cube (0 < y, < D). Itis clea,r that if any other of

the (n o

in (b) and the (n — j — 1) complementary y’s had been specified in (d), the
corresponding A ;(y, ys) and B;(y) would be equal to those given in (2.3); hence

Pr{Y <y <Y+ AY} —-n’z( l)fH”B:'(y)

i=0

combinations of j y’s out of the set of (n — 1) y’s had been specified

(24) : fv o_ AiY, ¥0) Ao 7y \/—J—_~ »

qDSY<(Q+1)D,Y<M, (q=071""7M)-

Ay, W) = “—‘—gl'—”’ and (see [1] and [2])

25) Bi) = " 2)1;;( 1y ( wi 1) v — DG + "

From (2.4) and (2.5) it follows that the probability function of y, say fa(y), is:

r =58 (70

2.6) ("I Na - v -G+,

qD§y<(q+1)D, (q=0)"')M)7 y<m'

fa(y) is not defined at (n — 1)D if (n — 1)D < 1 (see (2.2));if m = 1, the range
of definition of f,(y) as given in (2.6) isy < 1.

The cumulative distribution function of ¥ is continuous with the exception,
in the case of (n — 1)D < 1, of a saltus of amount [I — (n — 1)D]* at y =
(n — 1)D (see (2.2)). The probablhty function f.(y) is continuous over the
range 0 < y < m with the exception, in the case of n > 3 and (n — 2)D < 1,
of a simple discontinuity at y = (n — 2)D.

For n = 2 and D < 1,

fy) =21 - y), (0<y<D,
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and Pr{y = D} = (1 — D).
Forn = 3and 2D < 1,
fs(y) = 6(1 — y)y, 0<Ly<D),
foy) = 6(1 — y)y — 12(1 — y)(y — D) + 6(1 — y)°, (D <y <2D),

and Pr {y = 2D} = (1 — 2D)°.
The expected value, say E(y), of y is:

(n— 1) 1 pyit .

o @) = Gt - = D)™ @ <1
' _@—1)

= FD D >1).

The expected value of S is D 4+ E(y). E(y) can be derived by use of (2.6)
or by use of a theorem of Robbins [3].

3. Probability that random linear set covers range of variate. Given that
F(z) =z, (0 < z < 1), and »nD > 1, what is the probability, say ,Pp, that
S(0,) contains the interval (0 < x < 1)? If D < 1, the interval is covered
if and only if (i), (ii) and (iii) below are all satisfied:

(i) yuSD; (u=1;”')n—1))
.. = D
(i) Eyu2<1—yo——2),

Uml
D
(iif) Yo < 5-
2Pp can be expressed as follows:

DI2 pl—yg

3.1) WP» = n! f f Cos(z) —e \/ - dyo,

Yo=0 Jz=1—yo=—D/2

where C,_1(z) (see. [2]) denotes the (n — 2) dimensional volume of the intersection

of the hyperplane J_ y, = z with an (n — 1) cube 0 <y, < D. It follows from
u=1

(2.5) and (3.1) that

Py = S (- 1)"( 1)(1 — uD)"

u=0

3.2) P S (" N 1)(1 — uD — .123>"

u=0

1(1/Dp)~1] _
o o (P Na-w- o

u=0

where D < 1 and [z] denotes the greatest integer lessthan z. If 1 < D < 2,

Dn
nPD=1—2<1—_2‘)~
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4. Sampling from F(z) = fo He™dt, (0 <z < w; H> 0). If F(z) =

‘l He #*dt, the probability function of S can be determined but is very cumber-

some in the form in which it is known to the writer. The characteristic function,
say g(6), of the probability funetion of S will be given instead. By use of (2.1)
it can be shown that:

n—1 D($6—\H)
4.1 00 20e \H
(4.1) 90) = ¢~ 11 {————————~—w —7
where z = v/ —1.
The expected value, E(S), and variance, oz, of S are:
(1 — —DHX)
ES) =D+ 4 Z )
(4’2) s -1_ n—1 (1 _ 6—2bax) B 2D n—1 e—Dm
% = H? 33 A2 H =1 A
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INFORMATION GIVEN BY ODD MOMENTS

By Epmunp CHURCHILL
Rutgers University

The widespread use of the third moment about the mean as a measure of skew-
ness and the belief engendered by this use that a distribution is symmetric if its
third moment is zero prompt the question of how much information about a
distribution can be deduced from a knowledge of its odd moments. An answer
to this question is: Let F(x), a cumulative distribution function; {pen—}, (n = 1,

-+), a sequence of real numbers; and € > 0 be arbitrary. There exisis a c.d.f.,
F*(z), having as odd moments the terms of the given sequence and such that

(1) | F(z) — F*z) | < & all «.
If the mean of F(xz) is equal to u; and the variance of F(z) is not zero, it can be

gshown that F*(x) may be chosen so that in addition the variance of F*(z) is

equal to that of F(z).
An immediate consequence of our statement is that a distribution need not be



