or returning to the original notation and retaining terms in 1/N,

$$(3) r \sim r_{\infty} \left(1 + \frac{1}{2N} \right) .$$

If x_p is defined by $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_p} e^{-t^2/2} dt = p$ we know from [3] that

(4)
$$\frac{\chi_{\beta}^2}{n} \sim 1 + \frac{\sqrt{2} x_{1-\beta}}{\sqrt{n}} + \frac{2}{3} \frac{x_{1-\beta}^2 - 1}{n}.$$

Proceeding formally and retaining terms in 1/N we obtain

$$\left(\frac{n}{\chi_{\beta}^2}\right)^{\frac{1}{2}} = \left(1 - \frac{x_{1-\beta}}{\sqrt{2N}} + \frac{4 + 5x_{1-\beta}^2}{12N}\right)$$

and multiplying by the expression for r given by equation (3) we find the desired expansion for λ .

(5)
$$\lambda \sim r_{\infty} \left(1 - \frac{x_{1-\beta}}{\sqrt{2N}} + \frac{5x_{1-\beta}^2 + 10}{12N} \right).$$

Recall that both r_{∞} and $x_{1-\beta}$ are readily obtainable from tables of the normal curve; in fact, r_{∞} is defined by

$$\frac{1}{\sqrt{2\pi}} \int_{-r_{\infty}}^{r_{\infty}} e^{-t^{2}/2} dt = \gamma \text{ and } x_{1-\beta} \text{ is defined by } \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_{1}-\beta} e^{-t^{2}/2} dt = 1 - \beta.$$

A comparative table of approximate and exact values of λ is given in Table 1° From the table we see that for $N \geq 800$ the error is less than 1 in the 4th significant figure, and for $N \geq 160$ the error is less than 1 in the 3rd significant figure within the limits of β and γ considered. The approximation will be less exact for higher values of β and γ .

REFERENCES

- [1] A. Wald and J. Wolfowitz, "Tolerance limits for a normal distribution," Annals of Math. Stat., Vol. 17 (1946), pp. 208-215.
- [2] C. M. Thompson, "Tables of percentage points of the χ^2 distribution," Biometrika, Vol. 32 (1941-42), pp. 188-9.
- [3] HENRY GOLDBERG AND HARRIET LEVINE, "Approximate formulas for the percentage points and normalization of t and χ²," Annals of Math. Stat., Vol. 17 (1946).

THE PROBABILITY DISTRIBUTION OF THE MEASURE OF A RANDOM LINEAR SET

BY DAVID F. VOTAW, JR. Naval Ordnance Laboratory

1. Introduction. Consider a random sample $0_n(x_1, \dots, x_n)$ of n values of a one-dimensional random variable x having cumulative distribution function F(x). Let there be associated with each x an interval of length D centered at x

(D a positive constant). Let $\overline{S}(0_n)$ denote the random set which is the point-set sum of the n intervals associated with 0_n ; $\overline{S}(0_n)$ is a set of one or more intervals. Let S denote the measure of $\overline{S}(0_n)$ (S is the sum of lengths of the intervals composing $\overline{S}(0_n)$). Given F, n and D, what is the probability function of S? This note contains a solution of the problem for F(x) = x, $(0 \le x \le 1)$; the case of $F(x) = \int_0^x He^{-Ht} dt$, $(0 \le x < \infty; H > 0)$, is also treated.

2. Sampling from a uniform distribution. Let y = S - D. The range of y is $0 \le y \le m$, where m denotes the minimum of 1 and (n-1)D. Let x_1 , \cdots , x_n be the sample values arranged in increasing order of magnitude. Make the transformation

(2.1)
$$y_0 = x_1 \\ y_i = x_{i+1} - x_i, \qquad (i = 1, \dots, n-1).$$

y can be expressed as $\sum_{i=1}^{n-1} m(y_i, D)$, where $m(y_i, D)$ denotes the minimum of y_i and D. The probability function of $(y_0, y_1, \dots, y_{n-1})$ is $n! \prod_{u=0}^{n-1} dy_u$, $(y_u \ge 0; \sum_{u=0}^{n-1} y_u \le 1)$. If m = (n-1)D, then y = (n-1)D if and only if $y_i \ge D$, $(i = 1, \dots, n-1)$; for a fixed y_0 it can be shown by use of the Dirichlet integral that the volume of the (n-1) dimensional region in which any point $(y_0, y_1, \dots, y_{n-1})$ satisfies this condition is $\frac{(1-y_0-(n-1)D)^{n-1}}{(n-1)!}$. It follows that:

(2.2)
$$\Pr \{ y = (n-1)D \} = n \int_{y_0=0}^{1-(n-1)D} [1-y_0-(n-1)D]^{n-1} dy_0 = [1-(n-1)D]^n, \quad ((n-1)D \le 1).$$

The probability that $Y < y < Y + \Delta Y$ (where Y < m and ΔY denotes an arbitrarily small positive increment in Y) can be evaluated by determining volumes of certain regions contained in the tetrahedron defined by $y_u \geq 0$, $\sum_{u=0}^{n-1} y_u \leq 1$. Consider the following conditions:

(a)
$$qD \leq Y < (q+1)D$$
 $(q=0, 1, \dots, M; M \text{ denotes the minimum of } (n-2) \text{ and the greatest integer less than } \frac{1}{D}$,

(b)
$$y_u \geq D$$
 $(u = 1, \dots, j; j \leq q),$

(c)
$$\sum_{u=0}^{j} y_u \le 1 - y_0 - y + jD$$
,

(d)
$$y_v < D$$
 $(v = j + 1, \dots, n - 1).$

The probability that $Y < y < Y + \Delta Y$ and that (b), (c) and (d) are satisfied is:

(2.3)
$$n! \int_{y=y}^{y+\Delta Y} B_i(y) \int_{y_0=0}^{1-y} A_i(y, y_0) dy_0 \frac{dy}{\sqrt{n-j-1}},$$

where $A_j(y, y_0)$ denotes the j dimensional volume of the region in which any point (y_1, \dots, y_j) satisfies (b) and (c), and $B_j(y)$ denotes the (n-j-2) dimensional volume of intersection of the hyperplane $\sum_{v=j+1}^{n-1} y_v = y - jD$ with an (n-j-1) dimensional cube $(0 \le y_v \le D)$. It is clear that if any other of the $\binom{n-1}{j}$ combinations of j y's out of the set of (n-1) y's had been specified in (b) and the (n-j-1) complementary y's had been specified in (d), the corresponding $A_j(y, y_0)$ and $B_j(y)$ would be equal to those given in (2.3); hence

$$\Pr \{Y < y < Y + \Delta Y\} = n! \sum_{j=0}^{q} {n-1 \choose j} \int_{y=Y}^{Y+\Delta Y} B_j(y) \cdot \int_{y_0=0}^{1-Y} A_j(y, y_0) dy_0 \frac{dy}{\sqrt{n-j-1}},$$

$$qD \leq Y < (q + 1)D, Y < m, (q = 0, 1, \dots, M).$$

$$A_{j}(y, y_{0}) = \frac{(1 - y_{0} - y)^{j}}{j!}$$
, and (see [1] and [2])

$$(2.5) B_{j}(y) = \frac{\sqrt{n-j-1}}{(n-j-2)!} \sum_{r=0}^{q-j} (-1)^{r} {n-j-1 \choose r} [y-D(j+r)]^{n-j-2}.$$

From (2.4) and (2.5) it follows that the probability function of y, say $f_n(y)$, is:

$$f_n(y) = n \sum_{j=0}^{q} \sum_{r=0}^{q-j} (-1)^r \binom{n-1}{j} \binom{n-1}{j+1}^n$$

$$\cdot \binom{n-j-1}{r} (1-y)^{j+1} [y-D(j+r)]^{n-j-2},$$

$$qD < y < (q+1)D, \quad (q=0, \dots, M), \qquad y < m.$$

 $f_n(y)$ is not defined at (n-1)D if (n-1)D < 1 (see (2.2)); if m = 1, the range of definition of $f_n(y)$ as given in (2.6) is $y \le 1$.

The cumulative distribution function of y is continuous with the exception, in the case of (n-1)D < 1, of a saltus of amount $[1-(n-1)D]^n$ at y = (n-1)D (see (2.2)). The probability function $f_n(y)$ is continuous over the range $0 \le y < m$ with the exception, in the case of $n \ge 3$ and (n-2)D < 1, of a simple discontinuity at y = (n-2)D.

For n = 2 and D < 1,

$$f_2(y) = 2(1-y),$$
 $(0 \le y < D),$

and
$$Pr{y = D} = (1 - D)^2$$
.
For $n = 3$ and $2D < 1$,

$$f_3(y) = 6(1-y)y,$$
 $(0 \le y < D),$

$$f_3(y) = 6(1-y)y - 12(1-y)(y-D) + 6(1-y)^2, (D \le y < 2D),$$

and Pr $\{y = 2D\} = (1 - 2D)^3$.

The expected value, say E(y), of y is:

(2.7)
$$E(y) = \frac{(n-1)}{(n+1)} [1 - (1-D)^{n+1}] \qquad (D \le 1);$$

$$= \frac{(n-1)}{(n+1)} \qquad (D > 1).$$

The expected value of S is D + E(y). E(y) can be derived by use of (2.6) or by use of a theorem of Robbins [3].

3. Probability that random linear set covers range of variate. Given that F(x) = x, $(0 \le x \le 1)$, and nD > 1, what is the probability, say ${}_{n}P_{D}$, that $\overline{S}(0_{n})$ contains the interval $(0 \le x \le 1)$? If D < 1, the interval is covered if and only if (i), (ii) and (iii) below are all satisfied:

$$(i) y_u \leq D, (u = 1, \dots, n-1),$$

(ii)
$$\sum_{u=1}^{n-1} y_u \ge \left(1 - y_0 - \frac{D}{2}\right),$$

$$y_0 \leq \frac{D}{2}.$$

 $_{n}P_{D}$ can be expressed as follows:

(3.1)
$${}_{n}P_{D} = n! \int_{y_{0}=0}^{D/2} \int_{z=1-y_{0}-D/2}^{1-y_{0}} C_{n-1}(z) \frac{dz}{\sqrt{n-1}} dy_{0},$$

where $C_{n-1}(z)$ (see [2]) denotes the (n-2) dimensional volume of the intersection of the hyperplane $\sum_{u=1}^{n-1} y_u = z$ with an (n-1) cube $0 \le y_u \le D$. It follows from (2.5) and (3.1) that

$${}_{n}P_{D} = \sum_{u=0}^{\lfloor 1/D \rfloor} (-1)^{u} {n-1 \choose u} (1-uD)^{n}$$

$$-2 \sum_{u=0}^{\lfloor (1/D)-1 \rfloor} (-1)^{u} {n-1 \choose u} (1-uD-\frac{D}{2})^{n}$$

$$+ \sum_{u=0}^{\lfloor (1/D)-1 \rfloor} (-1)^{u} {n-1 \choose u} (1-uD-D)^{n},$$

where D < 1 and [x] denotes the greatest integer less than x. If $1 \le D < 2$, ${}_{n}P_{D} = 1 - 2\left(1 - \frac{D}{2}\right)^{n}$.

4. Sampling from $F(x) = \int_0^x He^{-Ht} dt$, $(0 \le x < \infty; H > 0)$. If $F(x) = \int_0^x He^{-Ht} dt$, the probability function of S can be determined but is very cumbersome in the form in which it is known to the writer. The characteristic function, say $g(\theta)$, of the probability function of S will be given instead. By use of (2.1) it can be shown that:

(4.1)
$$g(\theta) = e^{iD\theta} \prod_{\lambda=1}^{n-1} \left\{ \frac{i\theta e^{D(i\theta - \lambda H)} - \lambda H}{i\theta - \lambda H} \right\},$$

where $i = \sqrt{-1}$.

The expected value, E(S), and variance, σ_S^2 , of S are:

(4.2)
$$E(S) = D + \frac{1}{H} \sum_{\lambda=1}^{n-1} \frac{(1 - e^{-DH\lambda})}{\lambda},$$

$$\sigma_S^2 = \frac{1}{H^2} \sum_{\lambda=1}^{n-1} \frac{(1 - e^{-2DH\lambda})}{\lambda^2} - \frac{2D}{H} \sum_{\lambda=1}^{n-1} \frac{e^{-DH\lambda}}{\lambda}.$$

REFERENCES

- [1] P. S. LAPLACE, Théorie Analytique Des Probabilités, Gauthier-Villars, Paris, Third Edition (1820), Book 2, Paragraph 13.
- [2] Philip Hall, "The distribution of means for samples of size n drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable," Biometrika, Vol. 19 (1927), pp. 240-245.
- [3] H. E. Robbins, "On the measure of a random set," Annals of Math. Stat., Vol. 15 (1944), p. 72.

INFORMATION GIVEN BY ODD MOMENTS

BY EDMUND CHURCHILL

Rutgers University

The widespread use of the third moment about the mean as a measure of skewness and the belief engendered by this use that a distribution is symmetric if its third moment is zero prompt the question of how much information about a distribution can be deduced from a knowledge of its odd moments. An answer to this question is: Let F(x), a cumulative distribution function; $\{\mu_{2n-1}\}$, $(n = 1, 2, \dots)$, a sequence of real numbers; and $\epsilon > 0$ be arbitrary. There exists a c.d.f., $F^*(x)$, having as odd moments the terms of the given sequence and such that

$$|F(x) - F^*(x)| \leq \epsilon, \underline{all} x.$$

If the mean of F(x) is equal to μ_1 and the variance of F(x) is not zero, it can be shown that $F^*(x)$ may be chosen so that in addition the variance of $F^*(x)$ is equal to that of F(x).

An immediate consequence of our statement is that a distribution need not be