TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION!

By A. WaLp anp J. WoLFowiTz
Columbia University and University of North Carolina

Summary. The problem of constructing tolerance limits for a normal uni-
verse is considered. The tolerance limits are required to be such that the prob-
ability is equal to a preassigned value 8 that the tolerance limits include at least a
given proportion v of the population. A good approximation to such tolerance
limits can be obtained as follows: Let Z denote the sample mean and s* the sample
estimate of the variance. Then the approximate tolerance limits are given by
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where 7 is one less than the number N of observations, x2 s denotes the number for
which the probability that x* with n degrees of freedom will exceed this number is
B, and r is the root of the equation

1 UVEFr o
—= dt = 4.
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The number x> s can be obtained from a table of the x distribution and r can be
determined with the help of a table of the normal distribution.

1. Introduction. The problem of setting tolerance limits for a distribution
on the basis of an observed sample was discussed by S. S. Wilks [1], [2] and by
one of the present authors [3], [4]. For a univariate distribution the problem may
be formulated briefly as follows: Let = be the chance variable under considera-
tion and let x1, - - - , zx be a sample of N independent observations on z. Two
functions, L; and L, , of the sample are to be constructed such that the probabil-
ity that the limits L, and L, will include at least a given proportion v of the popu-
lation is equal to a preassigned value 8. The limits L, and L, are called tolerance
limits.

The following two cases have been treated in the literature: (1) Nothing is
known about the distribution of x, except perhaps that it is continuous, or that it
admits a continuous probability density function. (2) The functional form of
the distribution of x is known and only the values of a finite number of parameters
involved in the distribution of x are unknown. We shall refer to (1) as the non-

1 This paper reports work done by the authors in the Statistical Research Group, Divi-
sion of War Research, Columbia University, under contract OEMsr-618 with the Applied
Mathematics Panel, National Defense Research Committee. The work was first reported
in an unpublished memorandum, ‘“Tolerance Limits for a Normal Distribution” (SRG
number 392, 3 January 1945) written by the authors, of whom one was a staff member and
the other a consultant of the Group. The problem was suggested by W. Allen Wallis on
the grounds that the limits previously proposed (see [4], section 5) are unsatisfactory for
most practical purposes.
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parametric case and to (2) as the parametric case. An exact solution of the
problem for univariate distributions in the non-parametric case has been given
by S.S. Wilks [1]. His results have been extended to multivariate distributions
by one of the present authors [3]. An asymptotic solution of the problem in the
parametric case, which may be used for large samples, was given in [4].?

In the present paper we shall deal with the problem of setting tolerance limits
for a normal distribution with unknown mean and variance. Approximation
formulas are obtained which differ from the exact values by a magnitude of the
order 1/N°. They give much closer approximations to the exact values than
those which can be obtained by applying the general asymptotic results in [4]
to the normal distribution. In addition, the approximation formulas in the
present paper have the advantage of considerable simplicity and can easily be
computed with the help of tables of the normal and x* distributions. To estimate
the closeness of the approximation of the formulas given in this paper, a method
of computing upper and lower limits for the exact values has been derived. Com-
putations show that the approximation is good even for small valuesof N. A few
numerical examples are given in section 7.

2. Precise formulation of the problem and notation. Let z;,---, zx be N
independent observations from a normal population with mean u and variance
o*, both unknown. We shall denote by # the arithmetic mean of the observa-
tions and by s’ the sample estimate of the population variance ¢°, i.e.,

N
Zx"

(2.1) z = ‘_JIV
and
. o
2.2) § = ;@1{——:‘—) , Wheren =N —1,

For any positive A we shall denote by A(Z, s, A), or more briefly by A, the propor-
tion of the normal universe included between the limits # — As and % + As, ie.,

(2.3) A =A@ 5N = —— f T et gy

) o V2r adp :
A is a chance variable, since the limits of integration are chance variables. In
this paper we shall deal with the problem of determining the value of A so that
the probability that A exceeds a preassigned value v is equal to a preassigned
value 8. The desired tolerance limits will then be given by  — Asand z + As,
respectively. In practice, the values 8 and 4 will usually be chosen near unity,

frequently > .95.

2 Although the results obtained in the non-parametric case could be applied to the
parametric case as well, it would not be satisfactory to do so, since for the parametric case
methods having greater efficiency can be devised by taking into account the available in-
formation regarding the functional form of the distribution.
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It can be verified that the distribution of A does not depend on the unknown
parameters u and 0. Thus we can assume without loss of generality that u = 0
and ¢ = 1.

For any given positive value A we shall denote by P(y,\) the probability that
A > 4. TFor a given value £ we shall denote by P(y,\ | ) the conditional prob-
ability that A > v under the condition that the sample mean has a given value
Z. It is clear that P(y,\) is equal to the expected value of P(y,\ | %), i.e.,

(2.4) Piy)\) = :f: | P [3) e gz
3. Method of computing P(y,\ | Z) for any given values y,\ and Z. Since A
= A(%,s,\) is a strictly increasing function of s, the equation in s

@.1) A(Zs\) =7
has exactly one root in s. Denote this root by
(3.2 s = r(Z7,N).

Thus, r(Z,y,\) is that value for which

1 Z4Nr (T, 7,\N) A
33) NG fi—)r(a‘:,'y,)\) o Td =
It is clear that Ar(Z,y,\) does not depend on \. 'We shall write
(3'4) XT(ZI-I,Y,}\) = T(£)’Y)~
Obviously r(Z,y) is that value for which
1 Z+r(z,7) 2y
8.5) \V2r fi—r(a‘:,v) ¢ =7

For given values of % and v the value r(Z,y) can be obtained from a table of the

normal distribution.

Since A(&,s,)) is a strictly increasing function of s, the inequality A(Z,s,\) >
v is equivalent to the inequality s > r(&,y,\) = r(Z,y)/\. Hence, since % and s
are independently distributed, we have

(3.6) P(y\| &) = P(s > r(Zv)/N)

where P(s > c) denotes the probability that s > c for any constant c. In gen-
ral, for any relation R we shall denote by P(R) the probability that R holds.
Since ns’ has the x” distribution with n = N — 1 degrees of freedom, we have

(3.7) P(s > "_(’-”)TV—)> - p(x1 > Qrzg‘ﬁ_“f))

where x> stands for a random variable which has the x* distribution with n
degrees of freedom. The probability on the right-hand side of (3.7) can be ob-
tained from a table of the x* distribution.
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Hence, we see that the computation of P(y,\ | Z) for given values y,\ and %
can be carried out in two simple steps. First we determine the value of r(Z,y)
from a table of the normal distribution and then read the value of

2/ =
P (x'i > ALy )(\::,7))
from a table of the x* distribution.

1
4. Proof that the difference P('y, ‘\/ N) P(v,)) is of the order 1/N2. It

is clear that P(y,\ | Z) is an even function of . Hence, in the expansion of

P(y,\ | ) in a power series in Z, only even powers will occur. Terminating

the Taylor expansion (in section 8 we prove its validity) at the fourth term,

we have

& &' P(y\ | %)
9z?

7 &' P(y,\ | %)

4.1) P(’Y’)‘ ] %) = P(’Y’)‘ IO) + 1 o7 -

+
£=0

where 0 < ¢ < Z
The expected value of P(y,\|Z) (considering # as a random variable) is
equal to P(y,\). Since the expected value of # is 1/N and the expected value
of
zo'P
4! 0%t lz=
is of the order 1/N? (this is proved in section 9), we obtain from (4.1)

1 &P
«2) Pl = P, A 0) + o 0E | +0 ()
On the other hand, substituting 1//N for & in (4.1) we obtain
1 1 &P 1 o'P
4D PoA|75) = P0A 10+ oy T L+ i 5

where 0 < ¢ < 1/4/N. Hence, since the second term of the right member
of (4.3) is of the order 1/N°

wn  Pop|oy) = Pl + 5 5F| +o(3).
From (4.2) and (4.4) it follows that

: 1
(4.5) Py — P<'y,)\ 7?) =0 (—15)

Thus, this difference approaches zero rapidly as N — .

1
5. Computation of the value A for which P<y,>\ l \—/—N) takes a preassigned
value 3. Denote by x7 s that value for which P(x% > x%.8) = B. This value can
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be obtained from a table of the x* distribution. From (3.6) and (3.7) it follows
that the required value A* of \ is given by the root of the equation

naf_1
(5.1) izr (\/TV,’Y):xg"'ﬂ.
Thus, the desired value of \* is given by

6 v =/ F o)

1
The value r (\/__J_V’ 7) is defined by (3.5) and can be obtained from a table of the

normal distribution.’

6. Lower and upper limits for P(y,\). As mentioned in section 2, P(y,)) is
equal to the expected value of P(y,\ | Z). Thus,

_ \/K’ +e -\ —iNE2 4
©6.1) Py = Y f_ POA DT d

To obtain upper and lower limits for P(y,\), we shall construct upper and lower
limits for the integral on the right-hand side of (6.1). It can easily be seen
that P(y,\ | ) is a strictly decreasing function of Z*. Hence, to obtain lower
and upper limits for the integral in the right member of (6.1) we can proceed
as follows: Choose a positive constant d and a positive integer k. Denote by
a; the probability that id < z < (kz' +1)d,(z=0,1, ---,k—1),and let akkbe the
probability that £ > kd. Then 22; a;P(v,\ | 7d) is an upper bound, and 22 Qi

P(v,\ | id) is a lower bound of the integral in question. Thus

k
(6.2) P(y\) > 2 Z—E ai1 P(y,\ |-id)
and .
(6.3) P(y,\) < 2 Z; a; P(y,\ | id).

The two limits can be brought arbitrarily close to each other by choosing d
sufficiently small and k sufficiently large. A method of computing P(y,\ | &)
for any given value & has been described in section 3 and the quantities a; can
be obtained from a table of the normal distribution. The amount of compu-
tational work, however, increases rapidly with increasing k.

3 The Statistical Research Group computed, under the supervision of Albert H. Bowker,
a table of tolerance limit factors A (see formula 5.2) for 8 = .75, .90, .95, .99; v = .75, .90,
.95, .99, .999; N = 2 (1) 102 (2) 180 (5) 300 (10) 400 (25) 750 (50) 1000. Mr. Bowker also
developed an asymptotic formula for A (published elsewhere in this issue of the Annals)
which, when 8 < .99, v < .999, and N > 160, agrees with (5.2) to within 1 unit in the third
significant figure. The Applied Mathematics Panel plans to publish the table and a brief
explanation of tolerance limits in the volume entitled Techniques of Statistical Analysis de-
scribed in the footnote on page 217.
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7. Approximate determination of the tolerance limits. The exact tolerance
limits are given by Z — As and % 4+ As where X is the root of the equation in A

(7.1) P(y\) = B.
This equation has exactly one root in A, since P(y,\) is a strictly increasing

function of A. Denote this root by A = A(8,y). Thus, the exact tolerance
limits are given by & — A(8,v)s and & + A(B,7)s.

1
We have seen in section 4 that P('y,)\ | \7&, closely approximates P(y,\), the
difference being of the order 1/N°. Thus, a close approximation to A(8;y) can
be obtained by solving the equation in A,
1
7.2 P\ 75) = 6-

This equation has again exactly one root in A, since P ('y,)\ | \—/]—v)ls a strictly

increasing function of \. Denote the root of equation (7.2) by A = A (8,v).
Thus approximate tolerance limits are given by Z—A*(8,y)s and &+A*(8,v)s.
In section 5 it has been shown that

(7.3) N*Byy) = 4/ 2

kL

where n = N—1, x% s is that number for which the probability that K’ with n
degrees of freedom exceeds this number is 8, and r is the root of the equation

1 ll\/ﬁ+r
(7.4) Vor jl/\/?«_r

The number x% s can be obtained from a table of the x* distribution and r can be
determined from a table of the normal distribution.

Since M\*(8,v) is only an approximation to A(8,v), Ply,\*(8,y)] will differ slightly
from 8. To judge the goodness of the approximation of A\*(8,y) to the exact
value \(B,y), it is desirable to derive upper and lower limits for the difference
Plv,\*(8,7)] — 8. Such limits can be obtained by computing upper and lower
limits for P[y,\*(8,y)] using the method described in section 6.

We cite here a few numerical examples to show the goodness of the approxima-

tion.

et = .

‘ Upper limit | Lower limit of
N " A MY of Plat@m] | Plaat@m]
2 .95 .95 37.674 .95202 .95077
9 .95 .99 4.550 .98989 .98908
25 .95 .95 2.631 .95161 .94393
25 .95 .99 2.972 .99024 .98813
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8. Validity of the Taylor expansion of P(y,\|Z). Weshall show that P(y\ |%)
has derivatives of all orders at every point # v and A being fixed. This is
sufficient to validate the Taylor expansion used in section 4.

For typographical convenience write

(%) = R.

We have
1 £+R i

8.1) vor fH Mgt = .
Differentiating (8.1) with respect to Z we obtain

dR\ —ja+m2 _ ( _ @) —j(&-R)?
8.2) (1 +-35>e =(1-%5)¢
whence
83) %:; — tanh ZR.

Now the analytic function tanh z of the complex variable z has only purely imagi-
nary singularities. Hence R possesses derivatives of all orders for all real values
of Z.

Now
R ® 1 2, (2\2
P(’Y}\If)=P(s>i)= 1_kj grl A o
[}
where k is a constant. Hence from (8.3)
(84.) g_;_) = __kRn—l e—nxz/(nz) ta,nh :T:R .

The right member of (8.4) is a product of functions which are analytic in the
entire (complex) R plane by a function which possesses derivatives of all orders
for every real . Since R possesses a derivative (with respect to Z) for all real
Z, it follows that P possesses derivatives of all orders for every real z.

# P ]_ (1)
E[:ﬁﬁ’z_f =0\x)

Since R is a minimum at Z = 0 it follows that P(y,\ | £) bas a maximum there.
Hence, from (4.1), the quantity

5;21‘22_1)
2/ 0z2

9. Proof that

#ap
70 4! 9z4

Za=f
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is never positive. Therefore
P

_1262P
9zt

e 22 972 s

Consequently e . is bounded above for | Z| > 4, where & > 0 is arbi-

trarily small. Since P possesses everywhere derivatives of all orders, the fourth
derivative is continuous and hence bounded above for | Z| < 6. From this we

obtain that & ¥
Since P(y,\ | x) 1s always positive we have, from (4.1), that

,_olrreil)

1s bounded above for every real Z.

2P
9F* |a= a:"
For | Z | greater than a sufficiently large number C, the left member of the
4
above inequality is thus bounded below. For | Z | < C we have that —— a P e
4 4 =
is bounded below because vP, is continuous. Hence 6—,— is bounded be-
ozt 0Tt |zt

low for every real Z.
4

Since %; is bounded above and below for every real %, the desired

result follows
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