AN APPROXIMATION TO THE PROBABILITY INTEGRAL

By J. D. WiLLiams
United States Naval Ordnance Test Station, Inyokern, California
1. Summary. It is shown that
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and that the equality is never in error by as much as three-fourths of one percent.
Other approximations are discussed.

2. For use on those occasions when an approximate analytic expression for
the integral
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is desired, the approximation
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is simple and reasonably accurate. An approximation equivalent to this is
quite commonly used in problems involving a bivariate normal distribution,
but its use in the one-dimensional case seems to be less well known.

We shall first show that p(z) < p’(x) and then estimate, by calculation,
the relative error made when the equality is accepted.
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The approximation, introduced at the stage of passage to polar coordinates,
comprises replacement of the square region of integration — z < z; < z by a

2 ) . .
circular region, 0 < r < \7; z, having the same area. Since we are dealing

with a circular normal distribution with zero means, the region of fixed area
which covers the greatest density is a circle whose center is at the origin.
Therefore our square region of area 42 must contain less density than the cir-
cular region of area 4x? by which we have replaced it.

The maximum value of the relative error,
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is found by calculation to be about seven-tenths of one percent, as may be judged
from Table 1, column 3.

The question may be asked: Can the relative error be reduced by suitable
choice of the parameter ¢ in

(5) px) = [1 — =17

Calculation indicates that by taking ¢ = 0.6302 the relative error is reduced to
about one-half of one percent; but this gain is offset, for many purposes, by the
loss of the inequality (3).

The density function implied by (2), namely

(6) o(z) = Lx_l e~(2lr)z2[1 _ 6—(2Ir)z’l—i’
T

has the variance
) o2 =7 (1 — log 2) = 0.964.

If ¢ is determined so that the density function will have unit variance, then
(5) becomes

®) @) = [1 - (g)""]‘;

this approximation to (1) leads to relative errors of almost two percent, which

occeur when z is small.
The density function (6) may be used to judge the quality of (2) in approxi-
mating to an integral of the form
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z2
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the approximation being
(10) P (@1, 2) = § [ (m) — P’ (m)]

when z; and z; are positive (which is the severe case). It is evident that the
relative error in accepting (10) for (9) cannot exceed the greatest relative dis-
crepancy ,, in the interval z; < z < ., between density function (6) and the

normal density

(11) p(x) = V2 °
The quantity
AC)

(12) € = ;(x—)

is tabulated in Table 1, column 6, from which it appears that the relative error
committed in using (10) for (9) will surely be less than one-and-a-half percent



AN APPROXIMATION 365

provided 0 < z; < 1.8; but the relative error may be very great when the inter-
val of integration lies beyond z = 1.8.

The approximations described herein were suggested by the following situa-
tion, encountered in work done by the Applied Mathematics Panel, NDRC:
The probability P of at least one success, defined by —z < z; < «, in a sample

TABLE 1
z P'(2) () & o'(2) p(z) «
.0 0 0 0 .3989 .3989 0
.1 .0797 .0797 .0002 .3969 .3970 .0005
.2 .1586 .1585 .0005 .3914 .3910 .0010
.3 .2360 .2358 .0008 .3821 .3814 .0018
4 3112 .3108 .0013 .3695 .3683 .0033
.5 .3836 .3829 .0018 .3539 .35621 .0051
.6 .4526 .4515 .0024 .3356 .3332 .0072
7 .5177 .5161 .0031 .3151 .3123 .0089
.8 .5785 .5763 .0038 .2929 .2897 .0111
.9 .6347 .6319 .0044 .2695 .2661 .0128
1.0 .6862 .6827 | .0051 .2454 .2420 .0141
1.1 .7329 .7287 .0058 .2211 .2179 .0147
1.2 7747 .7699 .0063 L1971 .1942 .0149
1.3 .8118 .8064 .0067 .1738 .1714 .0140
1.4 .8443 .8385 .0069 .1516 .1497 .0127
1.5 .8725 .8664 .0070 .1306 .1295 .0085
1.6 .8967 .8904 .0070 .1113 .1109 .0036
1.7 L9171 .9109 .0068 .0937 .0940 —.0032
1.8 .9341 .9281 .0065 .0781 .0790 —.0114
1.9 .9485 .9426 .0063 .0640 .0656 —.0244
2.0 .9600 .9545 .0058 .0520 .0540 —.0370

of n pairs (z; , z2) from a population in which the independent component prob-
abilities are p(z), is

(13) P=1-]-p@@].

A little numerical exploration, supplemented by examination of the limiting
values as £ — 0 and z — «, revealed that whén P is fixed the quantity log n is
very nearly a linear function, of slope minus two, of log z; so nearly, in fact,
that one was encouraged to posit the linearity and observe the consequences.
This yielded (5), which became (2) by requiring that it go to zero with z in the
same manner as (1).



