ENLARGEMENT METHODS FOR COMPUTING THE INVERSE MATRIX

By Louis GurT™MAN
Cornell University

1. Summary. The enlargement principle provides techniques for inverting
any nonsingular matrix by building the inverse upon the inverses of successively
larger submatrices. The computing routines are relatively easily learned since
they are repetitive. Three different enlargement routines are outlined: first-
order, second-order, and geometric. None of the procedures requires much more
work than is involved in squaring the matrix.

2. Introduction. A set of methods is presented here for computing the in-
verse matrix, based on what we shall call an enlargement principle. The princi-
ple is to build the inverse upon the inverses of successively larger submatrices.
This leads to simple repetitive routines that are not unlike iterative steps, but
afford a direct solution.

The basis for such routines has also been noticed before,’ but does not seem to
have attracted the attention it merits. A possible reason for this lack of atten-
tion may be the belief that the methods apply only to a restricted class of mat-
rices. We establish a simple lemma in this paper which shows that the enlarge-
ment methods apply to all nonsingular matrices, so that their use is perfectly
general.

The enlargement principle may be considered an opposite of the “condensa-
tion” principle that governs Gauss’ method of elimination and its variants such
as the Doolittle procedure and Aitken’s ‘“pivotal condensation.”? It is interest-
ing that the same formula upon which the enlargement methods are based can
also serve as a foundation for the condensation methods, as is shown in section
7 below.

The enlargement methods have the following characteristics:

(1) The first-order procedure outlined in the next section has been learned
by statistical clerks in about ten minutes. People who calculate inverses only
occasionally and forget the process between times should find the method as
economical as those who must constantly compute inverses.

(2) They are direct methods, and yield an exact answer with not much more
work than is involved in squaring the matrix.

(3) They can be adapted to electric punch-card systems, which will be effi-
cient when very large matrices are to be inverted.

11t has appeared earlier in [2]. Waugh’s recent note [10] also rediscovers the basic for-
mula although only a specialized use is suggested there. Professor Harold Hotelling has
called my attention to reference [1], which overlaps substantially with the present paper,
and to a use of an enlargement approach to computing latent roots and vectors [9]. Iam
also indebted to Professor Hotelling for other helpful comments on the present paper.

2 For an excellent summary and bibliography of direct and iterative methods for com-
puting the inverse matrix see ([5], [6]).
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(4) A sequence of inverses is yielded. Exact inverses of successively larger
submatrices are computed in the routines, and these inverses are often them-
selves of interest. For correlation problems, this means that a sequence of sets
of successively higher order multiple correlation constants is produced routinely.

(5) The general formula upon which the methods are based allows many varia-
tions in procedure, so that special adaptations can be easily made for special
matrices.

A “first-order’’ enlargement procedure for computing the inverse matrix will
be outlined in the next section. The proof for the method follows from the gen-
eral formula in section 4. This procedure and formula are also described in
[2]. Other enlargement routines are described in subsequent sections. Some
additional formulas of relevance are discussed in section 8.

3. First-order enlargement. Let the matrix whose inverse is desired be

Gn QG2 °**° Qia

................

Qn1 Qn2 *** Can

The following sequence of successively larger principal submatrices will be as-
sumed to be nonsingular:

Gn G2 O3
Gu Or2
A2= ’ A3= a1 QG2 Qg ,""Aa-

Qg1 Q22

Q3 O3z Os3

If necessary, the rows and columns of A, can always be shifted to obtain such a
sequence. The following additional notation will be used:

B = (@1,i4102,i41 * * * Gi,i41)
Ci = (@i41,1 Big1,3 *** Big1,d)

d; = Qig1,641.

Thus, we can write
’
| A; B;

,0.' ds

The first-order enlargement procedure is to compute in turn A3*, 432, <+ - , 43
The inverse of A, is computed by the traditional steps:

{1} Compute A = @1@22 — ana12, and compute 1/A.

{2} Then '

Agr = ,  @=23,n—1).

Aa —A7lay

43" =
d A-l aa A-l an
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Remember that B, = (a15 ass), C2 = (@a1 @s2), and that d; = as;. The steps
for computing A3 are as follows:

{3} Compute E; = A3'B,.

{4} Compute f; = dy — C.E; .

{5} Compute 1/f,.

{6} Compute G; = f3'E; , and compute Hy = f3'C.43".

{7} To each element in 43" add the product of the corresponding elements
in Ez and Hs to form Kz = Az_l + E;Hz .
Then the third order inverse is

“=|
3 =
—H, 1/f;
In general, to obtain A7} from A3, (6 = 2,3, .-+, n — 1), imitate® steps
{3} through {7}:
{3’} Compute E; A.TlB:

{4’} Compute f; — C.E;,

{6’} Compute f7.

{6’} Compute G; = f7'E;, and compute H; = f7'C:A7".
{7’} Compute K; = A7' + E;H;. Then

| |

s+1 —Hi l/f

By repeated applications of steps {3’} through {7’} to the successively larger
AT Al s attained.

If A, is symmetric, then almost half the work is saved, for then B; = C; ,
G; = H;, and K; is symmetric, (: = 2,3, -+ ,n — 1).

To help gauge the amount of work needed to arrive at 43}, let us compare it
with the work that would be needed to square A, . For the general asymmetric
case, n? product sums of 7 terms each are required for A% , a total of n* multipli-
cations. With calculating machines, the sums of the products are accumulated,
so that no separate process of addition is involved. To reach 47 by the above
enlargement method, n* — » multiplications are required. Most of the addition
is accomplished in the process by accumulative multiplication, but an additional

n(n — 1)6(2"' b)) + n — 3 terms have to be added otherwise. Furthermore,

n — 1 reciprocal numbers are needed. Thus, A7! involves somewhat less multi-
plications than does 4% , but needs more additions, as well as some reciprocal
numbers.

3 Actually, these steps could be used immediately in place of steps {1} and {2} to com-
pute A1, by letting ¢ = 1, and letting 4, = a1; (which may be assumed different from zero).
The traditional method, however, is quicker for the 2x2 matrix.
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In linear multiple correlation problems, if 4,4, is the correlation matrix of the
first ¢ 4+ 1 variates, then E; consists of the regression coefficients of the first 7
variates for predicting the (z + 1)th variate, and f; is the square of the multiple
correlation coefficient for this regression.

4. A lemma and the general formula. The enlargement procedure just out-
lined is one of many possible routines which can be developed from a general
formula for the inverse matrix in partitioned form. This formula seems to have
appeared first in [2], where it is stated that the method applies only to the cases
where f; 0 in step {4}. We shall establish here a lemma that shows that this
is no restriction, for the submatrix in step {4} is always nonsingular. Our lemma
proves that the enlargement methods will invert any nonsingular matrix.

Let A, be a nonsingular matrix of order =, partitioned in the form

A B
¢ D

where A is of order m, (1 < m < n), and will be assumed nonsingular. B and
C are of n — mrows and m columns, and D is of order n — m.
The following lemma is needed to show that enlargement methods will invert

any nonsingular matrix:
Lemma. If in (1), both A, and A are nonsingular, then the matriz

(2) F =D — CA'B'

¢)) A, =

18 nonsingular.
For the proof, postmultiply the first submatric column of 4, by 4~'B’ and

subtract from the second, leaving

&)

A0
C F
M differs from A, only by an elementary transformation; hence its rank is that
of A.. But clearly the rank of M is the sum of the ranks of 4 and F. There-
fore, the rank of F is n — m, and F is nonsingular.
The inversion formula itself is the following identity:
A B A7 + AT'B'FICATY —AT'BF
¢ D —F'ca™ F ’
A direct verification that the identity holds can be obtained by multiplying the
right member in either direction by the right member of (1), yielding the unit
matrix.
In section 3, the formula exhibited for A7} at step {7’} is easily identified
as a special case of formula (3) where n = 7 + 1, m = ¢. F corresponds to f;,
which is a scalar number; hence F-! is easily computed in this case.
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b. Second order enlargement. In formula (3), once A is given, the rest of
the work is essentially straightforward matric multiplication, except for com-
puting F-!. In section 3, F was easily inverted since it was of order unity. F
c¢an also be easily inverted if it is of order two, so that a second order. enlargement
procedure is feasible, computing 471, from A7'. The steps are similar to those
in section 3 but involve larger matrices.

Letting A; have the same meaning as in section 3, define now B;, C;, and D;
according to the partitioning

A; B
C: D

A¢+z = '

Then B; and C; are of two rows and ¢ columns, and D; is of order two. Compute
A7" asin section 3. From then on, to compute A7; from 4, the steps are:
{3”} Compute E; = A7'B;.
{4”} Compute F; = D; — C; E:;.
{5”} Compute F;* by steps [1] and [2] of section 3.
{6”} Compute G; = F;'E;, and compute H; = F;'C:A7".
{7”} Compute K; = A7' + E:H;.

Then
- K —G;
-H, F7 )

If n is even, successive enlargements will lead 43'. If n is odd, then 471, is
attained, from which 473! can be computed according to section 3.

The number of multiplications and additions for this procedure is the same as
for section 2. However, less writing is involved since only about half as many
A; are inverted. A disadvantage is that it is more complicated at each stage
than is the procedure of section 3.

AT =

6. Geometric enlargement. Another routine is that which may be called
geometric enlargement. Here, Az is computed from A37'. The steps may be
described as follows. Letting 4 have the same meaning as previously, redefine
B;, C;, and D, according to the partitioning

A; B:
C: Dy

Ay =

Then B;, C;, and D; are all, like 4, square matrices of order . Compute A3
according to steps {1} and {2}, and compute 43" according to steps {3”} through
{7”}. From then on, to compute Az; from A7', the steps are formally the same
as before, with a complication in step {5}
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{3""} Compute E; = A7'B;.
{4""} Compute F; = D; — C:E; .
{5} Compute F;' by geometric enlurgement in the same way as A7
{6""} Compute G = F;'E;, and compute H; = F;'C:A7".
{7} Compute K; = A7* + E:H;.
Then,
K, -G “

—H, F7'

This method involves less writing than the others, but is more complicated.

-1
Az.‘ = ‘

7. Condensation methods; special cases. Formula (3) also affords a basis for
condensation methods by “back solution.” For example, let A be of order m,
where m is one or two so that 4 is easily inverted. Then F is of order n — m,
and we will denote it by Fn,— . Partition F,_,, into the form

@ @
A¥ B
c® p®@

where A® is again of order m, defining Fn—sm of order n — 2m. Continue the
process until an F; is reached which is easily inverted, and solve backwards toreach
Fil., and then A7, by repeated use of (3).

Formula (3) is of great help in those special cases where A is large but easily
inverted, such as a diagonal matrix, orthogonal matrix, etc. The labor can then
be focussed on inverting an F which is much smaller than 4, .

|

8. Further identities. It is of some interest to exhibit some matric identities
relevant to formula (3). Using the notation of section 4, let us seek the inverse of
A, partitioned in the form

) A7 =l v ”
Y Z
An equation to be satisfied is
w X' A B I0
r oo sl-ls
which yields the equations
5) WA+ X'C =1
(6) WB' 4+ X'D =0
) YA+ ZC =0

(8) YB' + ZD = 1.
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If A and D are nonsingular, then from (6) and (7),
9) X' = —WB'D, Y = —ZCA.
Using (9) in (5) and (8), and remembering the lemma of section 4, we obtain
(10) W = (4 — B'D'C)7, Z = (D — CA™B).
Using (10) in (9) yields
(11) X' = —(A — B'D(C)'B'D—}, Y= —(D — CA'B)"1CA™.
Putting (10) and (11) into (4) completes the formula
- _ ‘ (A-BD'0)™ —(A -BDC)*'B' D™ “

—(D —CA7'B)'cATT (D -CcAT'B)T
Comparing (3) with (12), we have the identities
(13) (A — B'DC)' = A' 4+ A™'B'(D — CA—'B’)"'CA!
(14) (A — B'D-'C)"'B’D™* = A—'B'(D — CA—'B’)™,

/

(12) c D

which may of course be verified by direct simplification.

An important feature of each of theseidentities is that the matrix in parentheses
on the left is of order m, while that in parentheses on the right is of order n — m.

A special case of (13) was noticed by the writer [3], [4] and of (14) by Leder-
mann ([7], [8]) and the writer ([3], [4]), in connection with regression problems
of factor analysis. In this special case, A4 is a diagonal matrix and hence easily
inverted; n — m is the number of common factors, which is usually small com-
pared with m; the correlation matrix of m observed variates is given factored
into the form A — B’D—C; and the work of inverting the correlation matrix of
order m is simplified essentially into inverting a much smaller matrix.

It should be noticed that (12), (13), and (14) assume that both A and D are
nonsingular, where (3) assumes only that A is nonsingular (since then F must be
nonsingular from the lemma of section 4).
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