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1. Summary. It is desired to find an approximate distribution of simple
Tixe+ -+ TrT1,_, imate of th ial
. % SR ) (7is an estlma'e of the serial corre-
lation coefficient p in a circular universe) in the case that p 0 in the universe.
Such a distribution is obtained by smoothing the joint characteristic function
of the numerator and denominator of the expression for #. The first two mo-
ments are calculated; from these 7 is seen to be a consistent estimate of p. A
graph of this distribution for sample size 7' = 20 and various values of p is given.
In addition, an approximate distribution for p = a} + -+ 4+ 2% is derived
which reduces to the exact (x*-) distribution if p = 0. From a formula which
yields all moments, it is concluded that, at least up to the degree of approxima-
tion attained, p/T is an unbiased and consistent extimate of .

form for the statistic 7 =

2. Several writers have investigated the temporally homogeneous stochastic
process defined by

(1) Lo — pTt—1 = %, t=172:"':T,|Pl<1,

where the z; are unobservable disturbances, normally and independently dis-
tributed with mean zero and variance o°, the z, are observed variates, and the
“first observation” z, has a normal distribution with mean zero and such a
variance o> that all later observations have the same variance. Thus we have

2
g

=

and the joint distribution of a sample of 7' + 1 successive values is

2 o

(1 - p2% 1 2 9
g(@o, Ty, -+ ¢, 7)) = (2M2)1/2+1/2 © exp —2—0—2 {ro + 27
(3)

- 2p(x0x1 + .+ xT—le) + (1 +P2)(xi + e+ xi'—l)}:l .

Koopmans ([1], formula 96), by smoothing characteristic values, has obtained
an approximation to the distribution of the serial correlation coefficient r for the
case p = 0, where

4) ro=

ZoZ1 + oo+ 4 TpaZr

2 2
zy + o0+ 2y

1 Cowles Commission Papers, New Series, No. 21.
80

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

The Annals of Mathematical Statistics. MIKGRN
Www.jstor.org



SERIAL CORRELATION COEFFICIENT 81

This result is expressed in the form of a definite integral whose evaluation
has not so far been effected.

By considering the related circular stochastic process, where z, is defined to
be the same observation as xr, great simplification is obtained. Here the
joint distribution of z; , x5, - - - , xr is

f@y, @, -+, 2p) = Ap) [ 1

@roty? PP | T 370 = )
5y {4+ LA+ 27) — 20(@2 + - + xm)}]
. 1=,
ME) = oy

By smoothing characteristic values, Koopmans ([1], formula 92) found a definite
integral and Dixon ([2], 3.22) an explicit expression for an approximate distribu-
tion of the circular serial correlation coefficient 7, for the case p = 0, where

Tt e+ xra
© il Eaerr
Dixon’s distribution Ro(7) has the simple form
) r (g + 1)
Q) Bo(r) = —= < (1 = A7
1 - -
rr (5 +3)

Rubin [3] proved these results to be equivalent. On the other hand, R. L.
Anderson [4] obtained the exact distribution of 7 in the case p = 0. Madow [5]
extended this result to the case p # 0, using a property of sufficient statistics
also noted by Koopmans ([1], p. 17) in connection with the non-circular problem.

It would, however, be difficult to find percentile points or moments from
Madow’s exact distribution. An approximate distribution of 7 for p # 0,
together with its moments, analogous to Dixon-Koopmans’ for p = 0, should
therefore be of interest. The purpose of this paper is to obtain such a distribu-
tion from the circular universe (5). The statistic 7 is shown to be a consistent
estimate of p within the limits 1mposed by the apprommatlon In addition, an
approximate distribution for p = 2 + -+ + 2% in the case p # 0 (which
reduces to the exact chi-squared dlstrlbutlon when p = 0) is derived, together
with all of its moments.

3. We begin by asking about an approximate joint distribution of p and § de-
fined by
p=ai+ - +ar

q

®)

Il

e + -0+ T2
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Defining ¢(u, v) as the expectation of exp[i(up + v§)], we have

)\(P) +o0 o0 1 1 + p2 .
o(u,v) = @n Z)lef . [w exp |~ o\ T < — %ou)p
On integration, we find

(10) é(u,2) = Np)[A(y, v)]?

where A(u, v) is the determinant of the matrix associated with the quadratic
form within the curly brackets in (9). A(u,v) is a circulant; its value as deter-
mined from the circulant formula ([2], p. 123) is

9

T

1) Aw,v) =11 (y — 2z cos 2—?)

t=

where y and z are defined by

2
y:ii—;—%azu
(12)
2 1_p+wv

To get an approximation A (u, ») to A(u,v) we smooth log A(u, v) by Koopmans’
method. We have

T
(13) log A(u, v) = 2 log (y — 2z cos ?%t)
t==l
We define A (u, v) through
(14) log A(u,v) = l log (y — 22 cos ?—ﬂ) dt

in which the summation in (13) is replaced by integration. The integral in (14)
is easily evaluated ([6], p. 65) giving
5 4.9\T

(15) Z(u, 1)) = (W) .
Incidentally, had we used §, = 21%5+1 + - -+ + Zr&r4z in place of § = §in (9),
we would have obtained the same expression (15) for A (u, v).

Setting ¢(u, v) = A(p)[A(u, v)]* we may determine A(p) by the requirement
#(0,0) = 1. A simple calculation yields the result A(p) = (1 — p)~ @B (Note

that ).\Ep; 1 — p” is close to 1 for large values of T). Our result for ¢(u, v)

appears as

T A2\
(16) 3, v) = () (Uig#iz-) .
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The approximate joint distribution of p and § may be written as the double
Fourier integral

0 0 o\ T/
(17) D(p,q) = )‘(p ) [* f i exp [—i(up + v7)] (&M) 2aludv

which we evaluate ([7], 576.3, 914.3) by changing integration variables from
u, v to y, z and integrating out y and z successively. We obtain finally

2,0 2\i-T/2
Dp, g) = g . [26°(1 — p7)] —(le)—l(p -z)rlz—i

. ' ()T ('g + %)
-exp [— Qj—‘..,(ll—_pg) {@+ op — ZPQ}].

Changing variables from p, § = pF to p, 7, we obtain for F(p, 7), the approximate
joint distribution of p and 7, the expression

Fp, 7) = T [26°(1 = ) P — )T

 rar(5+))

(19)

_ D 2 _ _
-exp[ m{l'l'l) 2P7'}:|-

We could also have derived (19), following Madow, by noting that for p = 0,
p and 7 are independently distributed, p having the chi-squared distribution and 7
having approximately the Dixon distribution (7), and that p and 7 are sufficient
statistics for the estimation of p and o°.

4. The approximate marginal distribution &,(7) of 7 is obtained by an easy
integration from (19)

© 2 2\1—~(7/2
Rp(i) = f F(p, T_)dp = _fg[za (1 _7}: )] 1/) (1 _ 7-,2)1‘/2—-)
’ ror (5 +3)
(20) [ e [— s = L - 2pf}] dp
~ (% +1)
Rﬂ(f) = —‘—‘—T_i— (]. — fz)T/2~*(1 + })2 — 2p’l-‘)_T/2,
rr (5 + :)

Our notation is consistent since R,(7) indeed reduces to the Dixon distribution
for p = 0. R,(F) has a maximum when
1
2o(T — 2)

A+ )T = 1) = VT(T = 2)(1 — 2? + (1 + )2}

T = Fmax =



84 R. B. LEIPNIK

A little manipulation shows that 1 > | fuex | > | o | and that fe, = p asymp-
totically. A graph (Fig. 1) of B,(7) for T = 20, p =0, .2, .5, .7, .9 is appended
from which it is seen that for | p | near 1, the distribution becomes highly con-
centrated about g . On differentiating &,(7) with respect to p and eliminating,
the envelope of the R,(7) is seen to be

T{=
(T+1) )
m“"“

R
=9
4
3
F2
dl
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F

Fig. 1. Graph of the Distribution of the Serial Correlation Coefficient in a Circular
Universe, for T' = 20

6. Before evaluating the moments of R,(7) we will pause to obtain the ap-
proximate marginal distribution P,(p) of p, and its moments. We write

+1 — —T/2’
P = [ P =T B0
on rew(~+§)

T2 _ D 1+, . NG l: ppr ]
v row] - o (FE0) L 0 - o en [

If we define I,(z), the Bessel function of order » and purely imaginary
argument by
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( ) (E>I+2ﬂ»
22 > 2
Le = nZ—O (v 4+n+1)’°

we obtain ([8], p. 79), ifp#0

_T p (14, P
@ P = 1o e[ - 2 (L)t (2 ),
andifp =0
. B (202)—2'/2 /et [ ]
o Lyl
2

on performing the integration indicated in (21). Py(p) coincides with the
exact distribution Po(p). An expression covering all moments of P,(p) is
obtained from (16) by setting v = 0, differentiating, and settingu = 0. We have

(25) 5w 0) — ) (y + /v _ (2] )_m’

hence

- (_202)70(1 _ p2)——T/2

Um0

" y+4/2—[_2P ]2 o
. éﬁz v 1—p°
Y

2

k
Elp*] =+ d ¢(u, 0)

(26)

y=(1+p2)/(1-p?)

From (26), we readily find

2z _ 2 2 p _ 2
@7) Apl = To°, B [T] —0

B} = (10 + 210+ (112
(28) ’

2 of1 40 2 1+4p
0p=2T0<1_p2 y UP/T—Tl_p

Thus the unbiased character of p/T as an estimate of ¢° is reﬂected in the ap-
proximate distribution, while (28), which shows that lim &7 = 0, indicates
that consistency is also reflected. T

6. We now calculate the momentsof B,(7). Interchanging the order of integra-
tion in the expression for E[*] is justified by the uniform convergence, so we have
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Foitad =f_:lf*[fo F’[p,r]dp]dr—j:[[:l * F(p, r)dr]
@) _ T 120201 — )™ f ® e
06!
5)T\2 2>+1
. exp [— 2, (i + z:)] { [ #a = exp om) df} dp

where m is defined by

_ 74
(30) m = AL=

Defining G(m) by
(31) G(m) = f_ : (1 — P exp (mF) dF
we have ([8], p. 79)

(32) G(m) = (%L)_m r (%)1:2((7;:;) + %)

Differentiating each side of (32) k times, we find by (31) and (32)
dk + =k ~2\T/2—1/2 o -
T G(m) = [1 (1 — 7) exp (mF) dr

(33) 2r/2 d*

= 1 T 1 d—rri—’; [m_T/2 IT/2(m)]-
r (2) r (5 * 2)
Using the identity ([8], p. 79)

4 L@ = 7 L)

and changing the integration variable in (29) from p to m, we obtain finally

-~ . ad _ 1 2 —1 B
(34) E[f'k] = gp T L m™*! €xXp (_m( 2-; L )) d(fn’“—‘ [m T/21m+1(m)] dm.

For k = 1, we have ([8], p. 386)

e P
(35) EM’H_?_'
T
For k = 2, after some tedious calculation, we find
2
B L4 PTT 4D

TH2 (T+2)T+4

2 1 )
[1 T+ (T + 5 4)]'

(36)
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We note that lim E(7) = p and lim &} = 0, so that at least to the extent of

T —+o00 T -0

approximation furnished by R,(7), 7 is a consistent estimate of p.

The author wishes to express his gratitude to Dr. T. Koopmans, under whose
kind direction this paper was written.
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