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A LOWER BOUND FOR THE VARIANCE OF SOME UNBIASED
SEQUENTIAL ESTIMATES

By D. BrackweLL AND M. A. GIRSHICK

Howard University and Bureau of the Census

Consider a sequence of independent chance variables x, , x; ,- - - with identical
distributions determined by an unknown parameter 8. We assume that E z; = 6
and that Wy = x; + --- + z; is a sufficient statistic for estimating 6 from
2y, -+, xr. A sequential sampling procedure is defined by a sequence of
mutually exclusive events S, such that S; depends only on x;, ---, x and
ZP(Si) = 1. Define W = Wyand n = k when S; occurs. In a previous paper
by one of the authors [1] it was shown that if Sy = W, C(S; + -+ + Si),
(where C(A) denotes the event that A does not occur), the function V(W, n) =
E(x; | W, n) is an unbiased estimate of 8, and ¢*(V) < o’(z;). It is the purpose
of this note to obtain a lgwer bound for ¢*(V). Our result is:

2 o (xl)
THEOREM 1. o (V) > B

We remark that the lower bound is actually attained in the classical case of
samples of constant size N. For in this case, (see [1]), V = E(zx; | Wy) = Wy/N.
In fact we shall show that in a sense this is the only case in which the lower bound
is attained.

The proof of Theorem I depends on certain properties of sums of independent
chance variables. These, formulated more generally than is required for the
proof of Theorem I, are given in

THEOREM 11. Let x,, 2, - -+ be tndependent chance variables with identical
distributions, having mean 6 and variance o*(z1). Let furthermore {Si} be any
sequential test for which E(n) is finite. Let W = z; + -+ + x when n = k.
Then

(8) (W — 6n) < o (z1) E(n).

(b) If o*(n) is finite, the equality sign holds in (a).

(c) E[xy(W — 6n)] = o*(z)).

Proor oF (a). Write y; = x; — 6, and define ¥ = 4 + --- 4 y when
n = k. By definition,

0

1) (W — 6n) = kZ; f (o + -+ + y)? dP.

= Sk
To prove (a), we must verify that the series on the right of expression (1) con-
verges and has sum <o*(z;)E(n). Now

N
S| i+ - +y)?dP
k=1 YSg

N—1
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Since the event {n > k} is independent of y; , each term in the second sum
vanishes and the first sum becomes

N N
Zf yi dP = o’(z1) D P{n>k)
k=1 J{n>k} =1

@) — P@)P{n = 1} + 2P{n = 2} + --- NP{n = N}

+ NP{n > N}l < " (z1)E(n).
This establishes Theorem II(a).
Proor or Tueorem 11(b). Writez; = |y:;| andlet Z = 2, 4+ -+ + 2; when
n = k. From (a) it follows that ¢’[(Z — nE(z;)] is finite. If in addition,
o’(n) < « then E(Z? < «. Thus the series

@ > [ e+ +arip= % [ azadp
k=1 Y3 1<¢,7<k<c Y8
converges, so that the series
(5) > [ vwsap
1<4,7,<k<o0 Y8k

converges absolutely. The terms of the latter series may be arranged to yield

@W: 5 [ Gt o+ dP = 2 OF = o)

or to yield
B: Zf vedP + 2 Zf s + -+ + ) AP = (@) E(n).
k=1 J{azky i=2 J{nazk)

This proves Theorem II(b).
Proor oF TaEorEM 11(c). It follows from Theorem I1I(a) that Exz,(W — 6n)

is finite. If we show that
(6) E(W — on|2) = a1 — 6,ie. E(Y |y1) = 1, it will follow [1] that
(1) Elm(W — 6n)] = Eln(z, — 0)] = o'(z).

To verify (6), it is sufficient to show that if f(x:) is the characteristic function
of an event depending only on z; (i.e. f(zi) = 1 when the event occurs, f(z:) = 0
otherwise)

€) E(fy)) = E({fY).

Write gy = 0,¢: = f-(2 + -+ + 9,0 2> 2.

Then it easily verified that

(9) E(¢jlx1,"',xi)=¢if0rj2’l:

(10) E¢; < kZl | s |

(11) E($:) = 0.
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Hence it follows [2] that E¢ = 0 where ¢ = ¢; when n = 7. In our case ¢ =
fY — fy,, and E¢ = 0 yields (6). This completes the proof of Theorem II.

Proor or THeorEMI. In [1]itis proved that E(x;(W — 6n)) = E[V(W — 6n)].
Hence employing Theorem IT we get

(12) o"(z:) = BIV(W — 6n)] = o(V)o(W — 6n)p

where p, (0 < p < 1), is the coefficient of correlation between V and W — 6n.
Substituting for ¢(W — 6n) we get

a’(z1) < o(V)a(x1) VEm) p
< o(V)a(z1) \V/E(n).

Solving for (V) we finally obtain

(13)

Uz(-’b‘l)

E(n)

(14) (V) >

which proves Theorem I.!

If ¢°(n) is finite, the equality sign in (14) will hold if and only if p = 1. We
shall now prove the following.

TaEOREM 1. Let N be the minimum value of n for which P(n = N) 0.
Then, a necessary and sufficient condition that p = 1 ¢s that P(n = N) = 1.

Proor. The sufficiency of this condition follows from the fact that if
Pin = N) =1,V = W/N. To prove the necessity of this condition, we
observe that if p = 1, V is a linear function of W — nf. That is,

(15) V = a(W — nb) + 8.

Now, since EV = 6 and E(W — nf) = 0, it follows that 8 = 9. Also, since
by hypothesis e*(V) = o*(x1)/E(n) and (W — nf) = o*(z1)E(n), it follows
that o = 1/E(n). Hence the estimate V is given by

W — né

(16) V= By + 0.

1 Under certain regularity conditions Cramér has obtained the inequality

9 log f\?
a9

aX(x) > l/E(

where f = f(z, §) is the density function of z ([3], p. 475). Thus with the same regularity
conditions, our inequality yields

(V) > 1/EWE (%"—ff)

which is a special case of the results presented by J. Wolfowitz in this issue of the Annals.
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Let N be defined as above. We note that N < « since by hypothesis E(n) <
Let Vx be the estimate of § when the sequential test terminates with n =
Then Vy = W/N. Substituting this value in (16) we get

w N |W
We exclude the trivial case where W = N§. Then (16) yields E(n) = N.
That is P(n = N) = 1. This proves the theorem.

We remark that N may be a function of 8 but for a fixed , n = N is fixed
when p = 1.

=8
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AN EXTENSION TO TWO POPULATIONS OF AN ANALOGUE OF
STUDENT’S (-TEST USING THE SAMPLE RANGE

By Jorn E. WaALsH

Princeton Unaversity

1. Summary. The modified ¢-test considered by Daly' (see [1]) is used to
develop one-sided significance tests to decide whether the mean of a new normal
population exceeds the mean of an old normal population having the same
variance. Significance tests are also developed to decide whether the mean of
the new population is less than the mean of the old population. These tests
require very little computation for their application and are approximately as
powerful as the most powerful tests of these hypotheses.

2. Introduction. Let r;, -+, ra, (n < 10), be independently distributed
according to a normal distribution with zero mean and unit variance. Let rq
denote the uth largest of the r’s. Then Daly has shown how to determine

numbers g, such that
(1) PT[’F/(T(,,) — T(1)) > ga] = «
Prif/(ramy — r@y) < —@d = a.

This note will use these relations to develop easily applied significance tests to
decide whether the mean » of a new normal population exceeds the mean p of

1 This problem is also considered by Lord in [2]. This note was in proof when [2] appeared.



