THE ESTIMATION OF DISPERSION FROM DIFFERENCES!

By AnTHONY P. MoORSE? AND FrRANK E. GRUBBS
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland

Summary. The estimation of variance by use of successive differences of
higher order is discussed in this paper. Heretofore, attention has been focused,
in published works, on estimates of variance obtained by employing the sum of
squares of deviations from the mean and also by using mean square successive
differences of the first order [1], [2], [3], [9]. A concise description of the method
employing differences of any order with appropriate formulae for the precision
of estimates so obtained and also a practical example on the use of the technique
are given in section 11. Fundamental contributions to the estimation of
variance from higher order differences, a study of the efficiency of ‘the technique
and proper orientation of the subject matter in the field of mathematical statis-
tics are given in sections 2-10 of the paper.

1. Introduction. It frequently happens that successive observations, made
at regular intervals of time, are subject to the same standard error while the
means of the populations from which they are drawn display some kind of trend.
The type of trend we speak of is brought about because of the manner in which
we have to take measurements or because of variations in the measuring tech-
nique itself; or, again, the trend may be characteristic of the thing we are meas-
uring. In any event, we may desire to eliminate the trend in order to study
residual effects. As an example, it is desirable in the field of ballistics to evaluate
the dispersion of machine guns firing from a moving airplane.

It may also happen that it is either inexpedient or impossible to estimate the
standard error of the observations by the method of least squares, for in a large
number of cases the type of trend is unknown. In this event a method employing
differences of an appropriate order may prove valuable. The method consists
merely of arranging the data in a vertical column in the order in which the obser-
vations were taken and then forming difference columns in the usual way of
order 1, 2, up to say 5 or some other number depending on the peculiarities of the
problem at hand and the number of the original observations. Next, sum the
squares of the numbers in each column and divide the sum of squares of the pth

order differences by (n — p) <2;)> When n > 2 and p > 1, the numbers thus

arrived at are all unbiased estimates of the population variance o* for the case
where all the observations have the same expected value. In section 11 at the

1 This paper is based substantially on a Ballistic Research Laboratory Report [10]
of the same subject by Morse and has been prepared for publication by Grubbs at the sug-
gestion of R. H. Kent. The authors are grateful to J. V. Lewis and H. L. Meyer for their
many and varied comments, criticisms and suggestions.

2 Now at the University of California, Berkeley, California.
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ESTIMATION OF DISPERSION 195

end of the paper will be found a summary of this method, formulas by which
the precision of the estimate of the variance ¢” may be determined, and an exam-
ple displaying the stability of this estimate with respect to p.

If a strong trend is present then the method of first differences will obviously
yield an estimate of variance which is fictitiously large and the temptation to
pass to higher order differences may quite reasonably be yielded to. As a matter
of fact, unbiased estimates may be hoped for from pth order differences whenever
there is good reason to suppose that the pth derivative of the trend function is
small most of the time. However, even in the case of a sinusoidal trend where
all derivatives have the same magnitude one may obtain good results frcm higher
differences provided there are at least seven observations in each irmterval of
length one period (see section 5 and Table II below). In connection with trends
such as the sinusoidal type, the hopelessness of getting, say, even a fifth degree
polynomial to fit over an interval of, say 20 periods is rather evident. It is
for the above reasons that estimation of variance from higher order differences
deserves consideration.

2. Historical comment. A brief historical development of the interest in
successive differences as a means for estimating dispersion is given in [3]. This
paper discusses the statistic

n/2

Z (%2 — 125—1)2
i=1

n

suggested by ‘“Student” [W. 8. Gossett] and E. S. Pearson and points out the
relevant work of Jordan, Helmert, Vallier, Cranz, and Becker. It seems that
Jordan devised methods based on sums of powers of the differences, whereas
Helmert gave more careful consideration to the case of the first power, i.e. the
sum of absolute differences. Referénce [3] points out, however, that in these
two cases all the n(n — 1)/2 differences that can be established from a sample of
n observations were included in the estimates of dispersion recommended by
Jordan and Helmert, so that the estimate was of no value in reducing the effect
of a trend. Continuing the remarks of [3], we learn that in ballistics Vallier
appears to have been the first to estimate dispersion from successive differences
and that Cranz and Becker commended the mean successive difference

n—1
E; = i_zl|$i+1— :c.-l
n—1

in estimating dispersion in range of guns since they were aware of variable ex-
ternal effects (such as tail winds) on a projectile. In this country, Bennett [1]
appears to have suggested the use of successive differences independently of
European ballisticians. In this connection, Bennett suggested that the probable



196

TABLE 1
The Efficiency, W(n, p), of 8%.p As An Estimate of o
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1.00000
.80000
.75000
72127
71429
70588
.70000
.69565
.69231

.68966
.68750
.68571
.68421
.68293
.68182
.68085
.68000
.67925
.67857

.67797
67742
.67692
.67647
.67606
.67568
.67533
.67500
.67470
.67442

.67416
.67391
.67368
.67347
.67327
.67308
.67290
.67273
.67257
.67241

.50000
.46154
.46552
47213
47771
.48214
.48568
.48855

.49091
.49288
.49455
.49598
.49722
.49831
.49926
.50011
.50087
.50155

.50216
.50272
.50323
.50370
.50413
.50452
.50489
.50523
.50555
.50585

.50612
.50638
.50662
.50685
.50707
.50727
.50746
.50764
.50781
.60797

.33333
.32000
.33149
. 34453
.3565637
.36408
.37113

.37691
.38173
.38580
.38928
.39228
.39490
.39721
.39925
.40107
.40271

.40419
.40553
.40675
.40787
.40889
.40984
.41071
41152
.41228
.41298

.41363
.41425
41482
.41536
41587
.41635
.41671
41724
.41765
.41804

.25000
.24427
.25510
.26871
.28071
.29071

.29904
.30602
31194
.31701
.32139
.32522
.32859
.33158
.33424
.33663

.33880
.34075
. 34254
34417
.34567
.34706
.34833
.34951
.35062
.35165

.35260
.35350
.35434
.35513
.35588
.35658
.35724
.35787
.35847
.35904

.20000
19672
.20633
.21888
.23058

.24070
.24934
.25672
.26308
.26859 .
.27342
27767
.28145
.28482
.28784

.290568
.29306
.29532
.29739
.29929
.30104
.30266
.30416
.30555
.30686

.30807
.30921
.31027
.31128
.31222
.31312
.31396
.31476
.31551
.31623

.16667
.16471
17274
.18385

.19476
.20450
.21300
.22039
.22684
.28251
.23752
.24197
.24595
.24953

.25276
.25569
.25837
.26082
.26307
.26514
.26705
.26884
.27049
.27203

.27347
.27482
.27608
27727
.27839
.27945
.28045
.28140
.28229
.28314

.14286
.14159
.14830

.15802
.16798
17714
.18530
.19250
.19887
.20452
.20956
.21407
.21813

.22181
.22515
.22819
.23098
.23354
.23590
.23809
.24012
.24200
.24375

.24539
.24693
.24837
.24973
.25101
.256221
.25335
.25443
.25545
.25642

.12500
.12414

.12978
.13827
.14729
.15581
.16353
17045
.17664
.18218
18715
.19164

19571
.19941
.20279
.20588
.20873
.21135
.21378
.21603
.21812
.22007

.22190
.22361
.22521
.22672
.22814
.22949
.23075
.23195
.23309
.23417

.11111

.11050
.11529
12271
.13086
13874
.14601
.15260
.15855
.16393
.16879

.17321
17723
.18091
.18428
.18738
.19024
.19289
.19535
.19764
.19978

.20177
.20364
.20539
.20704
.20859
21006
.21145
.21276
.21401
.21519

.10000
.09955
.10366
.11018
11754
.12481
.13162
.13787
.14356
.14875

15347
15778
.16173
.16535
.16869
7177
17463
17728
17975
.18205

.18420
.18622
.18811
.18989
19157
.19315
.19465
.19606
19741
.19868
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TABLE I—Continued

AN
N
n \\ 1 2 3 4 5 6 7 8 9 10
AN
42 .67213 |.50828 [.41875 |.36009 |.31756 |.28472 |.25822 |.23617 |.21738 |.20105
44 .67188 [.50855 |.41941 |.36104 |.31877 |.28615 |.25986 |.23799 |.21937 |.20320
46 .67164 |.50880 |.42000 |.36191 |.31987 |.28745 |.26135 |.23965 |.22118 |.20516
48 .67143 |.50903 [.42055 |.36271 |.32088 |.28865 |.26271 |.24117 |.22284 |.20695
50 .67123 |.50925 |.42105 |.36343 |.32180 |.28975 |.26397 |.24256 |.22437 |.20860
52 .67105 |.50944 [.42151 |.36411 |.32266 |.29076 |.26512 |.24385 |.22578 |.21012
54 .67089 |.50962 |.42193 |.36473 |.32345 |.29170 |.26619 |.24504 |.22708 |.21153
56 .67073 |.50979 |.42233 |.36531 |.32418 |.29257 |.26718 |.24614 |.22829 |.21284
58 67059 |.50995 |.42270 |.36585 |.32487 |.29338 |.26811 |.24717 |.22941 |.21405
62 .67033 |.51022 |.42337 |.36682 |.32609 |.29484 |.26977 |.24903 |.23144 |.21624
66 .67010 |.51048 |.42395 |.36767 |.32718 |.29612 |.27123 |.25065 |.23322 |.21817
70 .66990 |.51069 |.42447 |.36843 |.32813 |.29725 |.27252 |.25209 |.23479 |.21987
74 .66972 |.51089 |.42492 |.36910 |.32898 |.29826 |.27368 |.25237 |.23619 |.22138
78 .66957 |.51107 |.42534 |.36970 |.32975 |.29917 |.27471 |.25452 |.23745 |.22274
82 .66942 |.51122 |.42571 |.37024 |.33043 |.29998 |.27564 |.25536 |.23859 |.22397
90 .66917 |.51150 |.42636 |.37118 |.33162 |.30139 [.27725 |.25735 |.24055 |.22609
98 .66897 |.51172 |.42689 |.37197 |.33262 |.30257 |.27860 |.25885 |.24219 |.22786
106 .66879 |.51192 |.42735 |.37263 |.33346 |.30357 |.27974 |.26012 |.24358 |.22936
114 .66864 |.51208 |.42774 |.37321 |.33418 |.30443 |.28071 |.26121 |.24477 |.23065
122 .66851 |.51223 |.42808 |.37370 |.33482 |.30518 |.28156 |.26216 |.24581 |.23177
138 66829 |.51247 |.42864 |.37452 |.33585 |.30641 |.28297 |.26372 |.24752 |.23362
154 66812 |.51266 |.42909 |.37517 |.33667 |.30738 |.28408 |.26496 |.24887 |.23508
170 .66798 |.51281 |.42944 |.37570 |.33734 |.30817 |.28198 |.26596 |.24997 |.23627
202 66777 |.51304 |.43000 |.37649 |.33836 |.30937 |.28635 |.26749 |.25164 |.23808
234 .66762 |.51322 |.43040 |.37708 |.33909 |.31025 |.28735 |.26860 |.25285 |.23939
266 .66751 |.51335 [.43070 |.37752 |.33965 |.31091 |.28810 |.26944 |.25377 |.24038
330 .66734 |.51353 |.43112 |.37814 |.34044 |.31185 |.28917 |.27063 |.25508 |.24179
394 .66723 |.51365 |.43141 |.37856 |.34097 |.31248 |.28990 |.27143 |.25596 |.24274
522 .66709 1.51381 |.43178 |.37910 |.34164 |.31327 |.29081 |.27244 |.25707 |.24394
778 66695 |.51396 |.43215 |.37963 |.34233 |.31408 |.29173 |.27347 |.25819 |.24516
1290 .66684 |.51409 |.43245 |.38007 |.34288 |.31474 |.29248 |.27430 |.25910 |.24613
2314 .66676 |.51418 |.43264 |.38036 |.34325 |.31518 |.29298 |.27486 |.25971 |.24680
@ .66667 |.51429 |.43290 |.38073 |.34372 |.31573 |.29361 |.27556 |.26048 |.24763
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error should be estimated from the root mean square successive differences as
follows:
,T_.l_‘—‘—";
PE. = 6145 '/ & @n— 2’
T2 —1)

In 1940, J. von Neumann and R. H. Kent in [2] investigated further the estima-
tion of probable error from mean square successive differences (sums of squares
of first differences). J. von Neumann, R. H. Kent, H. R. Bellinson, and B. 1.
Hart [3] considered the distribution of

n—1

Z (@ipr — .-

in a paper which appeared in June 1941. J. D. Williams [4] obtained the
2

n—l

)
moments of n = & where

& 1< Y
7—”;1 )5,

and indicated that the rth moment of 5 is equal to the rth moment of §* divided
by the rth moment of s*. The distribution of the ratio of the mean square
successive difference to the variance has been published by J. von Neumann
[5], [6] and B. I. Hart tabulated the probability integral and obtained percentage
points for this statistic ([7], [8]). Indeed, it should be remarked that the statis-
tical theory of successive differences is allied with the problem of serial correla-
tion [9]. Finally, the use of squared differences of higher order than the first for
estimating variance appears to have been suggested by A. A. Bennett. Quite
independently, a treatment of the subject was given by Morse [10] in connection
with problems on exterior ballistics. Various results on successive-difference
estimation including significance tests have been given by Tintner [13]. One of
Tintner’s tests involves the use of selected sets of differences.

3. Definitions and notations. Suppose the observations z;, z,, @3, - - &,
are made at timesa = t; < & < £, < .-+ < {, = b and the ¢; are uniformly spaced
without error. Let f(¢;) be the true trend so that n; = f(¢;) is the mean of the
population from which z; is drawn and €; = z; — 7, is a random error. Further,
let p be a non-negative integer less than » and denote to the sth backward differ-

ence of order p of x by A’z;, i.e.

Apxi = Ap—lwi - xﬁ-—l = i ( 1) ( >wi—r7

7=l

m m! .
= . g > .
where (n) alm — w1’ and? > p+ 1
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We define the following:
1 n
) . e = TN 2 (A%
(217) (n — p) i1
©) dop = 7 3 (W)
( (n ) t=p+1
®) : L
Vasr = 7o N n) 5
(22”) (n — p) i=p+1
2___ _ - ? P
4) kayp = (2p) o g’; . (A%:) (A%).

By E(u) we will mean the expected value of u, whereas the variance of u will
be denoted by

Var (u) = E{u — E(u)}%.

Basically, we shall assume that the e¢; are sufficiently Gaussian and inde-
pendent that

E(e) = E() =0, E(€) = o,
w = E() = 36*,
B(é) = B(DE(),
whenever 4, j, @ and 8 are positive integers for which
1 # g, 1<:1<m, 1<j< n

4. Expected values. We will now determine the mean or expected values
of 8%, and d%,, .

E(5.5) = @,T);—_;) 5 {é = ( )e'"’} ’
B = (2—;) % (?) e
p
or
® EG.) = .

(see Lemma 1.3 of section 6 below),
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Continuing, we have

1 n
E A P —— E{ > (@ + A”mf},
(2p> (n — p)

i=p+1

$=p+l

2 1 22) 2 = 2
B = n——{@ - o(F) ¢+ 3 @),
4 _ (4 ;
(p) (n P)
or

(6) E(di,) =d + vap.

Consequently, we observe, d% , is on the average larger than ¢” by the quantity
v% ». In a particular problem, therefore, we are faced with the situation of
choosing that combination of #» and p which (z) regulates the size of . and ()
gives the desired precision of our estimate of variance.

5. The magnitude of »%.,. In order to study the size of Ve » , we will derive
for this quantity an upper bound which will indicate the applicability of the
method of differences to non-polynomial as well as polynomial trends.

Now,

ts h h
wr=wg@ = [ [ [0 - w) dgy i,
=1

where ¢t — t,_1 = h, by straightforward integration. It will be convenient to
change the order of integration; thus

h h ptg
ey = [ o [ [P == =) dndy, - die
=1

Since, from Schwarz’s inequality it is clear that

{[o@a} <@-a [ tgo)as

whenever « and 8 are real numbers and ¢ is integrable, we have
h h tg
i <w [ [T O == v ddyy o de.
=1
Also,

n

2 h h ptp ¢ .
2wt s w [ [T e = dudyy o i
1=Dp P
Butfor0 < r < (p — 1)h = ¢, — a we have
tn tp—r b
[[19w = ran= [ yC@rs < [ g@ores

tp



ESTIMATION OF DISPERSION 201

Consequently

S @t <w [ [ [ e asa =1 [ 5001 6

i=p+1

Since h = b_“_“l. we have finally

o e

which is an upper bound for % » in terms of the average value of the square of
the pth derivative of the trend function f.
If the trend function f is of the polynomial form,

@ = g at’

then the effect of the trend can be eliminated from our observations by estimating
dispersion from (p + 1)st differences. However, if it is known that the trend is
of polynomial form, then an estimate of dispersion based on least squares would,
of course, be better. In fact, it will be shown later that the premsmn of &%,
decreases markedly as p increases. The use of d%.» as an estimate of o’ is pri-
marily of value when the type of trend is unknown; however, even when the type
of trend is known the computational simplicity of d% , may offset to some extent
its lack of optimum precision.

Let us reflect on the magnitude of »% , over a single period of a sinusoidal trend,
say f(f) = sint. In(7) weset a = 0,b = 27 and secure

T 2p—1
oS e (52)
(B
Taking n to be the number of observations for a complete period, a tabulation of
the upper bound for »%, , for this case is given in Table IT. Thus, when there
are about seven or more observations in each interval of length one period, esti-
mation of dispersion from higher order differences may prove of considerable
value even for this rather extreme type of trend.

6. Some combinatorial relations. Although we will ultimately establish
expressions for the variances of 3%, and d , , it appears desirable to give first a
number of combinatorial relations which present themselves in the computation
of moments. The relations are easily checked and most of them are possibly
well known. Nevertheless, it will be convenient to record them for reference
and in some instances to give proofs. In what follows it will be understood that

<§) = 0 whenever p and g are not such integers that 0 < ¢ < p.
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TABLE II
\
» \ 5 6 7 8 9 10
N\
1 .617 .395 .274 .201 154 .110
2 .676 .260 .120 .063 .036 .016
3 .751 .164 .049 .018 .008 .002
4 .106 111 .021 .005 .002 .0003
5 — 098 009 002 0004 0000

P p—1
L 1.1 = ( )
- q(q) P\g -1

LeMma 1.2. 4 =(

Lemma 1.3. Z (Z:.) (r _2*’_ s) = (p%iz-) s)'

Proor:
Y (25 ) = 01+9)%={0+2)) = {E (’s’) x}
-2z()(2)~
Hence
(N-2()(2)
and

(2)-206-)-20)(2)-2(1.)0)

Lemma 14. Ifp* + 7 > 0 then (2;) = (p : 1> + (f : })

LemMa 1.5. (p — 2r) (p) = p{(p ~ 1> - (p : 1)}
LemMma 1.6. (p — 2r) (é )2 = p{(pr: 1>2 - Zf :1 })2}

Proor: Multiply, using 1.4 and 1.5.
s 22V [(2p—1\ _( 2p—1 ¥
LemwMa 1.7. r(p+r)—p p—r —e_1)r

3 Major A. A. Bennett communicated this Lemma.
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Proor: (s — 2t)(§>2 = s{(s —t 1)2 - (: : ;)2} from 1.6.

Puts = 2p,t = p — r, then

2p 2_ 2p—12_(2p—1 :
2r<p+r) _2p{(p—r) p—r—1/["

Levma 1.8. If f is a function, 1, n, p are integers and p + 1 <t < n, then

2 (2 )6-n-5 ()0
22 )= P UICED> - (2) 0

Lemma 1.9. If —o < A(r,s) = A(s,r) < o for each integer r and s, then
E ({Z 2 A, 9e es}z) = (ue — 3% 2:1 A(r, 1)}
r=1 8=1 r=
n 2 n n
a {z:l A(r, r)} + 24 21 > A(r, 8)2

r=1 8=

Proor:

Proor: Let N(r, s) = 1 when r < s and let N(r, s) = 0 otherwise. Clearly

Zn; Z_; Alr, S)eres = Z Alr, e + 2 Z; El NG, )A(r, e

and

(& 4000ef) - (G 40

+ 4E ({rz:; .,Z; N(r, s)A(r, 8)er ea}z> .

No
E ({g Al r)ei}z> = (= N DA+ {;, AC, r)}2,
and |
4B {z; 3 NG, 94 e e}z)
SYT> 3 NG, 4G, o

= 95 i 2": A(r, s)* — 20* Z A(r, r)?

r=l 8=l
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The last three relations combine to yield the desired result.

2
LemMa 1.10. (2;)) (n — p)’E(3,.5)

(u4—3a)§{_2p:+ (zf )} +"4{§l=§1<z >}
P

+ 25 ;g{;ﬁ;l(z ? )( >}2

Proor: Helped by 1.8, check that

i (E o ()] - (Eon (2 )

SRR ()2 )
Therefore
(1)t - B £(2.)(2 e
Ar,s) = (=)™ iﬁz;d (z _1: )(1 2 s)’

and apply 1.9 to complete the proof.
LemMma 1.11.

3 2 2p — 1>2 (2p - 1)2
- n_p)r=§n<p+r> 2p< P T\, '
Proor.

r}_:{ sg;{mzp;l (1 d 7’) ( ’ '5‘>}2

¢§1j§rl§§< s (J'I‘)s><’£>(l )

2R EEO (=)L) s
(7

3 P
- 1.
’—;"1 j=p+1 g 8=0 ( ) 'I.) (1‘) (r + .7 ) uSlng 8 a'ga'm,

Let
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=f§1igl;(f)(r+§—i);<f)<s+?_i)
55 EOCI ) - 2502 )
= n—i—l ('n—p—lr|)(pizi’r)2

r=p+l—n

=r="§z"(n—zo—Irl)<p+,.)2

_ n—p 2p 2 n—p <2p )2
== p)r=zpz..<p+r> Zr p+r
< (2 \ 1S 2p — 1\? 2p—1 \\ .
=(n—p)rp_ —I{)r>_2,=op (;}—r) _(p—j—or—l) , using 1.7;
_ = (2 \ _ 2p—1\" _( 2p-1 )
_(n_p)r=p—n<p+r) 2p{( p (2p—n—1
2

o852\ 2p — 1\ 2p — 1\?
~o-0 2 (,2) -w(, ) (P

T=p—n
Lemma 1.12.
n n 2
p - (n 2p
222 -e-n (%)
Proor.
n n n n ” D
535G - 2502) - Z.5(7) w15
r=1 i=p+1 \? — i=p+1 r=1 i t=p+1 r=0

~e-2Z () - 0-n(*?).

7. Thevanances of &, 2 andd’, ,. Inorder togetsome idea as to the efficiency
of the statistics &% , and d? , , we will examine their variances. We have

(F) 0 = 2 var 62 = (%) n — #7* (BG4 — 1BGL)

- () @t rae et Z (G2 ) -ae (P )
+ 4po* (2” " 1)2
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with the aid of Lemmas 1.10, 1.11, 1.12 and using the relation u, — 35" = 0.
Thus, .

2
(2;’) (n —p)* Var (5,,,)
= 2(n — p)o* Z > — 4p <2P1;- 1) + 4po’ (2pn— 1) '

r=p—n

(8)

If 2p < n, then

26T -2()-@)
Moreover, (2;0 n_ 1) = 0.

Therefore,
2]) 2 _ 2 2 _ _ 4p 4 _ 2p —1 2 4
® () o - pvar@) =2 - (50)o (')

when 2p < n.
As for the variance of d’, ,, we have

Var (d%,) = Eldh, — Vip — 0°)F = E{6hp + kup + Vi — Vo — o)
= E(3%, , — &) + ka. 5},

or

(10) Var (d.,) = Var (8,.,)" + E(k%.0),

since E[(¢%,., — 0)knp) = 0.
However, from Schwarz’s inequality, it is guaranteed that

E(kzn.p) < 41’:;,?0'2-
Thus
(1) Var d% , < Var (8% ,) + 4%, 0"

An upper bound has already been given for »% , in section 5 above.
8. The efficiency of 4% ,. It is appropriate to consider the efficiency (as
defined by Fisher [11]) of the statistic 6% ,. In this sense, the efficiency of

8%,p is given by

2 -
Var s, where s& = Z (i — i)?
n .

W(n,p) = .
(r, P) Var 6%, n—1
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Accordingly,
WD) = 5T var G
or
W(n, p)
a2 _ o= (3)
a=0{o-n Z (T) -2 ) ("}
If2p<n
(n — p) ( )2
S (o= (® p)p_ (@)1 from (9);
or
(14) W(n, ) = (ip> if2p < m.

4\ [, _p—1 1—22)&;*1—)2]’
EAR = P}{ (v~ (35)}

Formulas (12) and (13) were used in preparing Table I given at the end of the
paper. For convenience in using formulas (1) and (2) the binomial coefficients

(2;’) for 0 < p < 10 are given in Table ITI.

If n > 2, then
2 1 =2(n—-1)
(15) W) =g 1 -2’
3n — 3

as was pointed out by von Neumann, Kent, Bellinson, and Hart in [3].
If n > 4, then

18 1 18(n — 2)?2

35 [ 18 = (n — 1)(35n — 88)°
1 2 35(n — 2)

(16) W(n, 2) =
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As a limiting value for n, we have

()
(17) W(w,p) = Lim Wn, p) = 2L
(2p>
Using Stirling’s formula for the approximation to the factorial, we have
Lim \/pW(w», p) = /‘/g
pP—r0 ™
Thus, as p — «, W(x, p) tends to zero and is asymptotically equal to 1/%
™

TABLE III
The Binomial Coeficient (2: )

h-J
—~
>~

48620
184756

S DXL O WO~ O
[

—

~\2

For the case n > 2, p > 1 and f constant, then s, = E_____sf' lx)

and d’, , are all unbiased estimates of the population variance o*. Moreover,
for this case

2
and &, ,,

Var (s%) _ Var (s%)

W(n, p) = - = .
( p) Var (5Zn.p) Var (dzn.p)

Using s., based on m — 1 degrees of freedom and keeping the trend, f, con-
stant, then m and n may be chosen so that approximately

Var (s%) = Var (d%,)
and for a normal population this means that

m=1+ (n— 1)W(n, p).
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Using Table I, it may be seen that for constant trend, f, the worth of dz .1 as
an estimate of ¢® for a normal population is about the same as that of s, , whereas
that of d}, ;is about equivalent to si . However, if the trend f1s not constant
then the worth of s as an estimate of ¢ is diminished while that of d2,.,,, is
increased.

Similarly, if the trend is cubic over 20 observations then least squares gives
an unbiased estimate of ¢* based on 16 degrees of freedom, whereas dzo 4 gives an
estimate equivalent in precision to about 6.4 degrees of freedom. However, if
only eight observations follow a cubic trend, then least squares furnish an un-
biased estimate of ¢ based on four degrees of freedom whereas d; 4 furnishes an
estimate equivalent to about 1.9 degrees of freedom. Thus, in the case of 20
observations, cubic least squares is, so to speak, 2.5 times as valuable as d3.4;
in the case of eight observations, cubic least squares is 2.1 times as valuable
as d§,4 .

It might be mentioned that the method of differences is of value in estimating
goodness of fit. If the fit is good, then our estimate of ¢° derived from least
squares should on the average be equal to the estimate derived from a suitable
d% ,. 1f the fit is poor then d’, , will be smaller on the average than the former.

9. The approximate probable error in estimating o from differences. The
approximate standard error of §,,, is given by the relation
18.E. 5%.,) g
BB Gus) ~ = = 2w = OWm, )

If p has been so chosen that v, » is suitably small then [see equation (11)]
some confidence may be put in the approximate formulas:

(18) SE ) = ol — W, )
(19) PE ((dn.p) = .67456

V2 — HW(n, p)’

Formula (19) was used in preparing Table IV which gives the approximate
probable error to be feared in using d. , as an estimate of ¢. This table should
yield interesting information whenever p has been chosen so that d’, »is a suitably
unbiased estimate of o”.

10. Remarks. We have presented a useful technique for estimating variance
from higher order differences and have given the precision of our estimate. The
method of estimating variance from higher order differences appears to be quite
valuable in cases where the type of trend in our observations is unknown. A
considerable field of work remains concerning a complete investigation of the
distribution and other properties of the statistic d%.,. In 'this connection,

n 2
n — ld"'1 ’
It is hoped that others will contribute to the problem of estimating dispersion

Baer [12] has already published a study on the stochastic limit of
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TABLE IV
The Probable Error In Estimating o From Differences*
\n P 0 1 2 3 4 5 6 7 8 9 10

1 .4769

2 .3373 | .4769

3 2753 | .3771 | .4769

4 2384 | .3180 | .4054 | .4769

5 .2133 | .2796 | .3495 | .4215 | .4769

6 .1948 | .2524 | .3104 | .3704 | .4404 | .4769

7 .1803 | .2317 | .2817 | .3318 | .3855 | .4390 | .4769

8 1686 | .2154 | .2596 | .3024 | .3477 | .3969 | .4442 | .4769

9 1589 | .2022 | .2420 | .2794 | .3183 | .3604 | .4057 | .4481 | .4769
10 1508 | .1911 | .2274 | .2610 | .2948 | .3311 | .3708 | .4128 | .4513 | .4769
11 1438 | .1816 | .2153 | .2457 | .2758 | .3074 | .3417 | .3794 | .4186 | .4537| .4769
12 1376 | .1734 | .2048 | .2328 | .2599 | .2880 | .3180 | .3508 | .3867 | .4234| .4558
13 1323 | .1663 | .1958 | .2217 | .2465 | .2717 | .2983 | .3272 | .3587 | .3930| .4276
14 1274 | .1599 | .1878 | .2120 | .2350 | .2579 | .2818 | .3073 | .3351 | .3656] .3984
15 1231 | .1542 | .1808 | .2035 | .2248 | .2459 | .2677 | .2905 | .3152 | .3423| .3718
16 1192 | .1491 | .1744 | .1960 | .2159 | .2355 | .2554 | .2761 | .2083 | .3223| .3485
17 1156 | .1445 | .1687 | .1892 | .2080 | .2262 | .2447 | .2637 | .2837 | .3052] .3286
18 .1124 | .1403 | .1636 | .1831 | .2009 | .2180 | .2352 | .2527 | .2710 | .2905| .3116
19 .1094 | .1364 | .1589 | .1775 | .1945 | .2106 | .2267 | .2430 | .2599 | .2777| .2967
20 .1066 | .1328 | .1545 | .1724 | .1886 | .2040 | .2191 | .2343 | .2500 | .2663| .2837
21 .1040 | 1295 | .1505 | .1677 | .1832 | .1978 | .2121 | .2264 | .2411 | .2562| .2722
22 .1016 | .1265 | .1468 | .1634 | .1783 | .1922 | .2058 | .2193 | .2331 | .2472| .2620
23 .0994 | .1236 | .1433 | .1594 | .1738 | .1871 | .2000 | .2129 | .2258 | .2391| .2529
24 .0973 | .1209 | .1401 | .1557 | .1695 | .1824 | .1948 | .2069 | .2191 | .2316| .2446
25 ,0954 | .1184 | .1371 | .1522 | .1656 | .1779 | .1898 | .2015 | .2131 | .2249| .2370
26 .0935 | .1160 | .1343 | .1490 | .1619 | .1739 | .1853 | .1964 | .2075 | .2187} .2301
27 ,0918 | .1138 | .1316 | .1459 | .1585 | .1700 | .1810 | .1917 | .2023 | .2130| .2238
28 .0902 | .1117 | .1291 | .1431 | .1553 | .1664 | .1770 | .1873 | .1975 | .2077| .2180
29 .0885 | .1097 | .1268 | .1404 | .1522 | .1631 | .1733 | .1832 | .1930 | .2028| .2126
30 .0871 | .1078 | .1245 | .1378 | .1493 | .1599 | .1698 | .1794 | .1888 | .1981| .2076
31 .0857 | .1060 | .1224 | .1354 | .1466 | .1569 | .1665 | .1758 | .1848 | .1938| .2029
32 .0843 | .1043 | .1204 | .1331 | .1441 | .1540 | .1634 | .1724 | .1811 | .1898| .1985
33 .0831 | .1027 | .1184 | .1309 | .1416 | .1514 | .1605 | .1692 | .1776 | .1860( .1944
34 .0818 | .1012 | .1166 | .1288 | .1393 | .1488 | .1577 | .1661 | .1744 | .1825 .1905
35 .0807 | .0999 | .1149 | .1268 | .1371 | .1464 | .1550 | .1632 | .1713 | .1791| .1869
36 0795 | .0983 | .1132 | .1249 | .1350 | .1441 | .1525 | .1605 | .1683 | .1759| .1834
37 0784 | .0969 | .1116 | .1231 | .1330 | .1418 | .1501 | .1579 | .1655 | .1729| .1802
38 0774 | .0956 | .1101 | .1214 | .1311 | .1397 | .14781.1555.| .1628 | .1700| .1771
39 0764 | .0943 | .1086 | .1197 | .1292 | .1377 | .1456 | .1531 | .1603 | .1673| .1741
40 0754 | .0931 | .1072 | .1181 | .1274 | .1358 | .1435 | .1508 | .1578 | .1646( .1713
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TABLE IV—Continued
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10

114
122

138
154
170
202
234
266

330
394

522
778
1290

2314

.0736
.0719
.0703
.0689
.0675
.0661
.0649
.0637
.0626

.0606
.0587
.0570
.0554
.0540
.0527

.0503
.0482
.0463
.0447
.0432

.0406
.0384
.0366
.0336
.0312
.0292

.0262
.0240

.0209

.0171

.0133

.0099

.0909
.0887
.0868
.0849
.0832
.0815
.0800
.0785
L0771

.0746
.0723
.0702
.0682
.0664
.0648

.0618
.0592
.0569
.0549
.0530

.0498
.0472
.0449
.0412
.0382
.0359

.0322
.0295

.0256
.0210
.0163

.0121

.1045
.1020
.0997
.0975
.0955
.0936
.0918
.0901
.0885

.0855
.0828
.0804
.0781°
.0760
.0741

.0707
.0677
.0650
.0627
.0606

.0569
.0538
.0512
.0470
.0436
.0409

.0367
.0336

0292
.0239
.0185

.0138

.1151
1123
.1097
.1073
.1050

.1009
.0990
.0972

.0939
.0909
.0881
.0856
.0833
.0812

L0774
.0741
.0712
.0686
.0663

.0622
.0589
.0560
.0513
.0476
.0446

.0400
.0366

.0318
.0260

.0202

.0151

.1029

1241
1211
1182
1155

.1130

.1107
.1085

.1064

.1045

.1008
.0975
.0946
.0919
.0894
.0871

.0830
.0794
.0762
L0734
.0709

.0666
.0630
.0599
0548
.0509
.0477

.0428
.0391

.0339
.0278
.0216

.0161

1322
.1288
1257
.1228
.1201
1176
1152
.1129
.1108

.1069
.1034
.1002
.0973
.0047
.0922

.0878

.0840
.0806

.0776

.0749

.0703

.0664

.0632

.0578

.0537
.0503

.0451
.0412

.0357

.0292

.0227

.0169

.1396
.1360
.1326
.1295
.1266
.1238
1213
.1189
.1166

.1125
.1087
.1053
.1022
.0994

.0968

.0921

.0880
.0845

.0813

.0785

.0736
.0695
.0661

.0605

-0561
.0525

.0471
.0430

.0373

.0305

.0237

L0177

.1466
1427
.1391
1357
.1326
1297
1270
1244
.1220

11176
.1136
.1100
.1067
.1037
.1009

.0960
.0917
.0880
.0847
.0817

.0766
.0723
.0687
.0629
.0583
.0546

.0489
.0447

.0387
.0317
.0246

.0183

.1533
.1491
1453
1417
.1383
1352
.1323
.1296
1271

1224
.1182

1144

.1109
.1077

.1048

.0997
.0952
.0913
.0878
.0847

.0794

.0749
.0711

.0650
.0603
.0565

.0505
.0462

.0400

.0327

.0254

.0189

1597
.1553
.1512
1474
.1438
.1405
1375
.1346
1319

.1270
1225
.1185
.1149
1115
.1085

.1031
.0984
.0943
.0907
.0875

.0819
.0773
.0734
.0671
.0621
.0582

.0521
.0475

.0412
.0337

.0261

.0195

.1661
.1613
.1570
.1529
.1492
.1457
.1425
.1394
.1366

1313
.1266
1224
1186
1152
.1120

.1063
.1014
.0972
.0934
.0900

.0843
.0795
.0755

.0689
.0639
.0598

.05635
.0488

.0423

.0346

.0268

.0200

* If d»2 is a sufficiently unbiased estimate of o2, then the approximate probable error
to be feared in using d»., as an estimate of ¢ may be obtained by multiplying the following
tabular entries by o.
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when observed data display trends as it is believed that the method of differences
deserves much attention. In particular, it is hoped that someone will have the
time and ingenuity to calculate the distribution of the statistic
8up !
hpt1
Were this done, an admirable criterion would be at hand for gauging the signifi-
cance of a change in the estimate of ¢ as we pass from differences of order p to
those of order p + 1. Of course, useful information in this connection could be
obtained from a knovs‘rledge of the distributions of 8% , and &% ,41 ;in fact their
variances as herein calculated give us a basis for somewhat reasonable conclu-
sions. An expression for the standard error of the difference between the
estimates of o from two consecutive series of finite differences is given in
[13, Chapter VI].
In connection with testing goodness of fit, it would be valuable also to know

the distribution of
2
n,P

2 )
6n,p—l-l

where S , is the estimate of variance derived from the least squares fitting of a
polynomial of degree p.

For convenience of reference, we conclude the paper with

11. A concise description of the method and its precision. It frequently
happens that successive observations made at regular intervals are subject to
the same standard error ¢ while the means of the populations from which they
are drawn display a trend. We give here a method of estimating the variance o*
and of determining the precision of our estimate. This method is primarily of
value when the trend is unknown ; however even when the type of trend is known,
its computational simplicity may make the method advantageous.

The method. Arrange the data in a vertical column and then in the usual
way form difference columns of order 1, 2, - - -, p. Sum the squares of the pth

order differences and divide by the number (n — p) (2;:> Our estimate of o°

. 2
is the number d,,, , where

1 n
dz’fh? = 2 Z (Ap :l;i>2‘
| (ﬂm—m*w
P
Z (xs — 2xi+l + z1'-}2)2
4 Dixon [9] gives moments of the statistic =1 - where Zp = =

> @i — zig)?
i=1

and Tpy2 = .
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The precision. The precision of this estimate may be determined from the
following information (which has been derived in the present paper):

E(d‘zn.p) =J + ”‘Zn,p',

2 _ 1 (b—a\(b—a\"" [PlfP@) ds
"""’S(2p>(n—p>(n—1> e b—a '’
P

Var (d% ;) < Var (6%,,) + 40, 0" ;

Var (2%.,) 204
ar 0np) = 7,
P (n— DW(n, p)’
where W(n, p) is given in Table I.
TABLE V

P 7, oy oy
1 18.90 184.62 11.22
2 1.21 1.88 10.56
3 .88 1.85 10.30
4 .87 1.84 10.12
5 .86 1.83 10.01

In case »% , is sufficiently small (this is determined by the requirements of the
given problem), then Table IV may be used directly to determine the approxi-
mate probable error in using d,,, as an estimate of ¢.

An example. As a practical example of the use of the method of differences
when the trend is unknown and of the stability of the statistic d’,, with respect
to p, we mention a recent problem at Aberdeen Proving Ground which had to do
with estimating the accuracy with which certain photographic measurements
locate a moving object. Ballistic Cameras were used to determine horizontal
r and y, and vertical z coordinates (all in feet) of an airplane traveling about
160 mph at an elevation of about 35,000 feet. An automatic pilot was in use in
the airplane as it flew over a three mile course. At one second intervals for a
period of 70 seconds two Ballistic Cameras, 5000 feet apart, were used to locate
the plane. Since the plane was traveling pretty much in the y direction one
would expect: that first differences would yield a standard error in y far in excess
of its true one; that second differences would furnish a much better estimate;
and that perhaps third differences would yield a still more trustworthy one. No
matter what order of difference is used we never expect such an estimate to be
too small. In this problem, the standard errors in z, y, z as estimated from dif-
ferences of certain orders, p, were as given in Table V.
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