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If we let fu(x) = ha(z) + po(x), and f(x) = po(x), then lim f,(x) = f(z), but
¢, = ¥ and ¢ = 1, hence lim ¢, # ¢. Employing the assumption that p.(x)
and p(x) are densities we see

1/¢c, = f Ja(z) dz, /¢ = f f(z) dz,
and hence lim ¢, = c¢if and only if
(13) limf falz) dz = f lim f,(x) dz.

It follows that in such cases if we wish to establish a limiting distribution in the
sense (1), we may either prove lim ¢, = ¢, or we may justify (13), say by produ-
cing a suitable dominating function, but we need not do both. No doubt the
first alternative would be preferable at all but the most advanced levels of
teaching or exposition.
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AN EXPLICIT REPRESENTATION OF A STATIONARY
GAUSSIAN PROCESS

By M. Kac' axp A. J. F. SigGErT

Cornell University and Syracuse University

1. In a paper which will soon appear in the Journal of Applied Physics [1]
the authors have introduced methods of calculating certain probability dis-
tributions which are of importance in the theory of random noise in radio re-
ceivers.

The complexity of the physical problem and occasional uses of heuristic reason-
ings may have obscured some of the mathematical points. For this reason the
authors felt that it may be worth while to illustrate one of the basic ideas on a
simple but important example.

2. A stationary Gaussian process is a one parameter family z(f) of random
variables such that:

(a). z(t) is normally distributed; the mean and the variance being inde-
pendent of ¢

(b). the joint probability distribution of z(t), z(f), « + - , z(t) is multivariate
Gaussian whose parameters depend only on the differences ¢; — & .
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We assume, for the sake of simplicity, that the process is normalized, i.e.,
E{z@®} =0, E{Z®)} =1
and we define the correlation function p(7) by the usual formula
p(r) = E{z(a(t + 7)}.

It is then well known® that a distribution function ¢(u) exists such that for all =
) o) = [ cos ur datu).

3. Let 0 < s,t < T and consider the symmetric kernel
K(s, t) = p(s — 1).

The fact that o(u) is non-decreasing implies that the kernel p(s — £) is quasi-
definite, i.e., for every L’ function g(f) on (0, T') one has

T T
[ [ atwots — g ds e > 0,
0 0
Thus the eigenvalues of the integral equation
T
@ [ ote =010 &t =276

are non-negative. Moreover, denoting by A; the eigenvalues and’by fi(® the
corresponding normalized eigenfunctions of (2) we have by the classical theorem
of Mercer (see [4], in particular part 6 of Ch. I) that

)] pls — 1) = 21: Nifi(s)fi®,

where the series on the right is absolutely and uniformly convergent. It should
be noted that in virtue of (1) p(7) is a continuous function.

4. Let now Gy, G:, Gs, - - - be independent, normally distributed random
variables each having mean 0 and variance 1.

Consider the series

4) 22 VNGifi®).
1
Since for each ¢t we have

S WO = TNEO = 60) = 1,

we infer that for each ¢ the series (4) converges in the mean to a random variable
x(t). Moreover, by a theorem of Kolmogoroff [5], the series (4) converges, for
each ¢, to z(f) with probability 1.

2 See [2]. The theorem in question (in a somewhat different form) seems to have been
first established by N. Wiener in [3].
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Thus we may write

®) z(t) = ; VNGifi(0).

It is now easy to show that x(¢) thus defined is a stationary Gaussian process
in (0, T") with the correlation function p(7).
In fact,

E{z)z®} = 2N = pls — 8,0 < 5,0 < T,

and conditions (a) and (b) of section 2 follow from the well known properties of
linear combinations of independent Gaussian random variables. Of course,
we are dealing here with infinite linear combinations but the mean convergence
noted above, is sufficient to justify the extension to our case.

5. It is more illuminating to think of the random variables G'; as measurable
functions Gj(w) defined on an abstract set @ in which a Lebesgue measure has
been established (the measure of the whole space being 1).

The representation (5) can then be written in the equivalent form

©) z(t,w) = 57_‘. VNGi@)f;0).

The equality, as established in section 4, holds for every ¢ in the sense of mean
convergence. Moreover, by the theorem of Kolmogoroff cited above, and by
Fubini’s theorem the equality (6) holds for almost every pair (¢, w), (0 < ¢ < T),
in the sense of ordinary convergence.

Furthermore by Mercer‘s theorem (remember that A; > 0)

’ZX,-=‘/;Tp(s—- ds=T
and hence .
Zj:NE{G?‘} = ;NLGE@) = ;M =T < .
Thus
; N Gi(w)
converges for almost every » and therefore the series

7) Z’; VAGi@)f;(®)

converges in the mean for almost every w.

Combining this fact with the observation that (7) converges almost every-
where to z(¢, w) we see that, for almost every w, the series (7) converges in
the mean to z(¢, ») and that consequently
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(8) /0 ’ 2t w) dt = 25 NG w)

for almost every w.

It should be noted that (8) could not, in general, be derived by just appealing
to Parseval’s relation. The main reason is that Parseval’s relation holds only
for complete orthonormal systems whereas the orthonormal system {f.(f)} of
eigenfunctions may fail to be complete. If the kernel p(s — ¢) is positive-
definite (in which case all the eigenvalues are positive instead of just non-nega-
tive) then it is known that the eigenfunctions form a complete set. This actu-
ally, happens to be the case in most physical applications.

6. An important application of (8) is the calculation of the characteristic
function of the distribution function of the random variable

© = fo "2, ) dt.
In fact,
(10) Blexp (igD)} = I] Elexp Gen 63 =TT (1 — ign) ™.

The probability density of I is the Fourier integral
o [ esn(—ih) IT (- ™ de
which, unfortunately, in most cases cannot be calculated explicitely. If
p(r) = e,
in which case the process is also Markoffian, the eigenvalues A; can be cal-

culated explicitly’ but in more complicated cases it is quite difficult to deter-
mine them.

7. If p(7) is absolutely integrable and ¢(x) absolutely continuous then, setting
A(w) = d'(u),

we have A(w) > 0 and

o) = [eosurd@au = [" "B, B - AW AW,

v—00

3 See [6], in particular section 4. We take this opportunity to correct two misprints in
this note. In the last formula on p. 64 M should be replaced by N. Also the limits of
integration in formula (6) should be 0, s and s, p + ¢ instead of 0, p + ¢ and 0, p + ¢.

The N.D.R.C. Report 14-305 to which a reference is made has been declassified in the
meantime. It contains results which originated both [1] and the present note.

4 These and related results were stated in the abstract [7] by M. Kac. The paper is now
being prepared for publication.
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It can then be shown4 that
Z A= 2#/ B*(w) du = f o’ (r) dr

T—-veo T — 00
and

lim = Z A= @2n)? [w B*(w) du.

T—>0 T '— o0

It follows now by standard methods that the characteristic function of

(11) :/%{f: 22(@t) dt — T}

approaches, as T' — o,
2
exp (_'2-2— 52 ) )

7 ==f o (1) dr.

Thus, as T — «, the distribution of (11) becomes normal with mean 0 and
variance o°.

where
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APPROXIMATE FORMULAS FOR THE RADII OF CIRCLES
WHICH INCLUDE A SPECIFIED FRACTION OF A
NORMAL BIVARIATE DISTRIBUTION
By E. N. OserG
Unaversity of Iowa
1. Introduction. Given the normal bivariate error distribution
(1) ¢(£U, y) = (1/21I'O'x O'y)e—(ﬂ/%z_‘_y?/%;).
The purpose of this paper is to present certain approximate formulas for the

radii of circles whose centers are at the origin, which include a prescribed pro-
portion, p, of errors. The formulas are, for given o, oy, and p,



