THE DISTRIBUTION OF THE RANGE'

By E. J. GuMmBEL
Brooklyn College, N. Y.

1., Summary. The asymptotic distribution of the range w for a large sample
taken from an initial unlimited distribution possessing all moments is obtained
by the convolution of the asymptotic distribution of the two extremes. Let «
and u be the parameters of the distribution of the extremes for a symmetrical
variate, and let B = a(w—2u) be the reduced range. Then its asymptotic
probability ¥(R) and its asymptotic distribution ¢(R) may be expressed by the
Hankel function of order one and zero. A table is given in the text.

The asymptotic distribution g(w) of the range proper is obtained from y(R)
by the usual linear transformation. The initial distribution and the sample
size influence the position and the shape of the distribution of the range in the
same way as they influence the distribution of the largest value. If we take the
parameters from the calculated means and standard deviations, the asymptotic
distribution of the range gives a good fit to the calculated distributions for normal
samples from size 6 onward. Consequently the distribution of the range for
normal samples of any size larger than 6 may be obtained from the asymptotic
distribution of the reduced range.

The asymptotic probabilities and the asymptotic distributions of the mth
range and of the range for asymmetrical distributions are obtained by the same
method and lead to integrals which may be evaluated by numerical methods.

2. Introduction. For any initial distribution, and any sample size n, the dis-
tribution of the range may easily be written down in the form of an integral.
However, for many given initial distributions the integration can be carried out—
if at all—only for very small sample sizes, say-n = 2 or n = 3. For larger
samples, complicated numerical calculations have to be made, and there is no
way of obtaining the distribution for » 4+ 1 observations from the distribution
for n observations.

Our object is to obtain the asympiotic distribution of the range. Nothing is
supposed to be known about the initial distribution, except that it is of the ex-
ponential type [9] which assures that it is unlimited in both directions, and pos-
sesses all moments. It will be shown that this condition is sufficient for the
existence of an asymptotic distribution of the range.

With increasing sampies sizes the distribution of the range may approach its
asymptotic form in a quick, or in a slow way. This behavior depends upon the
nature of the initial distribution. Two examples for this approach will be
shown.

1 Research done with the support of a grant from the Social Science Research Council.
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3. The exact distribution of the range. Let ¢(x) be any initial distribu-
tion, &(z) the probability of a value equal to, or less than, z. Then, for samples
of size n, the joint distribution w,(z; , z,) of the smallest value z; and the largest
value z, is

(1) (21, Ta) = n(n — 1)e(@) (@(2n) — B(21))" "p(Tn).
The distribution g,(w,) of the range w, defined by
(2) xn = xl + w1.

is obtained by integrating over all values x; < z, whence

® o) =ne— D [ @+ w) — 2@ el + wel@ ds,

where the index 1 has been dropped. The probability G,(w,) for the range to
be equal to, or less than, w, is obtained by integration of (3), whence, by re-
versing the order of integration,

+00  pwy
Gn(w,) =n f_ 3} 'i (n — 1)@ + w) — &))" d®(x + w,) do(2),
or, after integration,
1
Galw) = [ (@ + wp) — 2(@)" de,

a formula to which Prof. H. Hotelling has drawn my attention. The beauty of
this formula is completely marred by the facts that, in general, we cannot express
®(x + w,) by &(z), and that the numerical integration is lengthy and tiresome.

The problem of the range for the normal distribution was first raised twenty
five years ago by L. von Bortkiewicz [1,2]. Forn = 2 and n = 3 the distribu-
tion of the normal range may be written down explicitly [12, 13]. For larger
normal samples up to n = 20, E. S. Pearson [16] and H. O. Hartley [10] have
calculated numerical tables of the probability of the range. L. H. C. Tippett
[20] has calculated the mean, the standard deviation, and the moment quotients
for the range of the normal distribution up to n = 1000. He gave formulae for
the moments in the form of integrals. Finally “Student’ [18] reproduced the
distribution of the range for small samples, n = 2, 3, 4, 5, 6, 10, by Pearson’s
type I, and gave a formula for large samples n = 20, 60, based on Pearson’s type
VI, a procedure which is purely empirical and, therefore, unsatisfactory for
theoretical purposes. A good resumé of the present knowledge about the
range is given in Karl Pearson’s Tables [17].

All these studies are confined to the normal distribution and allow no conclu-
sion about the asymptotic distribution of the range. According to Kendall [11]
it is not known whether such forms exist and what they are. This question may
at once be answered for a special case. If the distribution is limited to the left
(or to the right), the asymptotic distribution of the range is equal to the asymp-
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totic distribution of the largest (smallest) value. The asymptotic distribution
of the range exists provided that an asymptotic distribution of the largest
(smallest) value exists. For the exponential distribution, and for initial dis-
tributions of the Pareto type, for example, the asymptotic distribution of the
range is equal to the asymptotic distribution of the largest value. The asymp-
totic distribution of the range for the rectangular distribution has been derived
by A. G. Carlton [3].

4. The asymptotic distribution of the reduced range for a symmetrical
variate. Instead of the procedures mentioned in the last paragraph, let us
consider a large sample. It is generally assumed that the smallest and the
largest values are independent in that case. L. H. C. Tippett [20] has shown
that the correlation between the extremes is negligible for the normal distribution
and for sample sizes n = 200. In a previous note [9] it has been shown that
independence holds for large samples and for initial distributions of the ex-
ponential type unlimited in both directions and possessing all moments. Then
the joint distribution (1) splits into the product of the asymptotic distribution
fi(z1) of the smallest value x; and the asymptotic distribution f,.(z,) of the largest
value z,

(4) m(xl 5 xn) = fl(xl) 'fn(xn)'

If, furthermore, the initial distribution is symmetrical about zero, the two
asymptotic distributions are

) filz) = aexplalm +u) — = fu(e,) = aexpl— al@, —u) — e =]

These asymptotic distributions and the corresponding probabilities are traced,
in a reduced scale, on Graphs (1) and (2).

Since the two parameters w and « will exist also in the asymptotic distribution
of the range, their nature must briefly be explained. The value u is defined as
the solution of

6) Bw) =1 — .
n

Since

(6" n(l — &) = 1,

the largest value u may be called the expected largest value. It differs, of course,
from the mean of the largest value. It has been shown [6] that  increases as
a function of the logarithm of n, the function depending upon the initial dis-
tribution.

Criteria for the approach of the distribution of the largest value toward its
asymptotic form have been given by R. A. Fisher and L. H. C. Tippett [4].
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For our purpose it is sufficient to consider whether # is so large that » is very
near to the most probable largest value %, obtained from

7_?'____1 =~ = @' (Zn)
@ T o) = 2.

If

, In U
holds with sufficient approximation, 2u may be interpreted as the range of the
modes for an initial symmetrical distribution.
The parameter « defined by
__o(w)
T 1 — ®(w

also is a function of n. Three cases have to be distinguished: In the first case, «
is a constant, or converges with n toward a constant different from zero. In the
second (and third) case, a increases with n without limit (decreases with =
toward zero). The three cases correspond to three classes of initial distributions
of the exponential type. The function « is related to the asymptotic standard

error of the largest, and of the smallest value by

2
™

9) loh = d’el = 5
If « increases (decreases) with n, or is independent of n, the standard error of
the largest value decreases (increases) with the sample size, or is independent
of it. This behavior has nothing to do with the fact that the standard error of
the mean decreases, of course, with an increasing number of samples.

The determination of the constants u and « from equations (6), (7), (8) is
based on the knowledge of the initial distribution and the sample size n from
which we take the largest observation. This method cannot be used in many
practical applications: 1) It may happen that the initial distribution, or: the
parameters it contains, are unknown. Therefore the parameters of the largest
value cannot be obtained from it. 2) The initial distribution might be known,
but the number of observations is insufficient to warrant this procedure, because
the most probable largest value Z, differs from the expected value u. In these
cases the parameters % and « have to be estimated from the observed distribution
of the largest value alone. A similar procedure will be used for the range in
paragraph 7.

From (4) and (5) the joint asymptotic distribution Ww(z, w) of the smallest
value z; and the range w becomes

® P

w(zy, w) = ofexpl—a(w — 2u) — &Y — gt

The asymptotic distribution g(w) of the range alone is, dropping the index 1,

4w
4 gw) = ot [ exp[—e*¢T — TV gy,
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This distribution contains the two parameters « and u existing in the asymptotic
distribution of the largest value. To eliminate the two parameters, a reduced

range R is introduced by
(10) R = a(w — 2u).

The range w is a positive variate unlimited toward the right. The reduced
range R is also unlimited toward the right yet limited toward the left by

(10" R = —2au.

The reduced range is not related to one of the averages of the range. It is the
range minus the range of the modes divided by a factor which is proportional to
the standard error of the extreme value. The distribution ¢(R) of the reduced
range R, and the distribution g(w) of the range w are related by

(1) B = g,

subject to restriction (10’), whereas the probability ¥(R) of the reduced range to
be equal to, or less than R is equal to the corresponding expression G(w) for the
range proper

(117 Y(R) = G(w).
For the integration in (4’) we put
alz +w —u) = —y
whence, from (10),
alr +u) = —y — R.

The asymptotic distribution of the reduced range becomes

+c0

(12) Y(R) = ¢ ® f exp[—e! —e V7| dy

— 0

and the asymptotic probability ¥(R) of the range is

o0

(13) ¥(R) = fw exg[y — e — ¥V Py

an expression which may easily be verified by differentiation.

The asymptotic formulas (12) and (13) hold for any initial symmetrical dis-
tribution of the exponential type, for example, for the normal and the logistic
distribution (see par. 7). The mean reduced range R and the higher moments
of the reduced range are easily obtained from the mean @, the variance a5, and
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the invariants A\, of order » of the range proper w given in a previous paper [8].
They are

—— 2’)’_ 2_1r2
(14) D=2+ o=
—_ 1 &
15) >\,=2(”_1_)_°Zl; » =2
o i1 k¥

where v stands for Euler’s constant.
Consequently the mean R, the variance o% and the invariants A, of the reduced
range are

2 0
(16) B=2y; =73 M=20-D12C;

k=1

v

2

Equation (14) leads to an interpretation of the reduction (10) which may be
written

R =qalw—w + 2y
or
(14") R= \—%w;w+2'y

Thus the transformation (10) is a linear function of the standard transformation
(w — W) /e, usual in statistics.

5. The probability of the range as a Bessel function. The integrals
(12) and (13) may be evaluated by numerical procedures, since tables of the
function exp(—e¢™Y) are easily calculated. However, it turned out to be simpler
to relate these integrals to the solution of a differential equation. The deriv-
ative ¢/(R) of the distribution (12) is

o0
V(R) = —y(R) + ¢ " f expl—y — R — ¢’ — ¢V Fldy

The integral is equal to the probability W(R) since the transformation
y+R=—2
leads to

oo +o0
[ expl—y — R—¢ — e "ldy = f explz — ¢ " — ¢ dz

Consequently the probability ¥(R) is subject to the differential equation
(17) V' + ¥ — " =0.
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The mode of the reduced range is a fixed value] R such that
(18) WR) = e *u(R).

Mr. W. Wasow (Swarthmore College) has drawn my attention to the fact that
the probability W(R) of the range can be expressed in terms of a Bessel function.?
To obtain this simplification of the differential equation we introduce a new
positive variable z by

(19) z = 2"
and a new function U by
(20) v =U-z
The boundary conditions are
(21) z2=0,v=1; 2= o; v = 0.
The first derivative becomes, from (19)
av _ _zdv
dR 2 dz

whence, from (20)

av 2 au
d—R-——'§<U+Z-d-;).

The second derivative becomes, by the same procedure
d_@___g__d_( 2U zsz)
dR* 24z
The second member may be written
z _IJ_'+§_zd_l_f+z_2d2_U _2U _32dU 2V
2\2 2 dz 2 dz?

Thus the differential equation (17) is now
AU | 8°dU _ ZFdU | U _2U 2

i T1d & T2 2 1U9=°"
Multiplication by 427" leads to
! 2d° U fd_[_]_ 2 =
(219 z_Jz?_'_zdz @+1)U=0.

This is one of the classical Bessel differential equations of order 1. In the nota-
tion used by the British Tables [14] (pp. 264 and 213) one of the solutions is

(22) U(z) = Ky(2),

2 T profit of this occasion to thank him for this and other valuable suggestions.
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where K;(z), the modified Bessel function of the second kind (Hankelfunction)
is defined by

2\
@ K@=t -152+19 S (3)
+1-SeTmm() (i -3).

The relation between the functions K,(z) and the Hankelfunction H(z) is

(23a) K2 = 12' TH® (32).

The asymptotic probability for the range is, from (20) and (22),
(24) ¥(R) = zKi(2)

or, from (19)

(25) ¥(R) = 267K, (277,

This is the only Bessel function satisfying the boundary conditions (21). The
asymptotic probability ¥(R) of the range may be written finally from (25), (23)
and (10)

(—=Rv) 1
(25a) 1-¥({R) = Z e’,‘l()v s (R — 2y 428, - ;)

where

1
So=0; S = hz;)\

The distribution

d\Ir(R) dz
“dz 4R

of the reduced range R is, from (24) and (19)

¥(R) =

W(R) = —2 (Ea(a) + 2Ki(2).

Now, the derivative Ki(z) is linked to the modified Bessel function Ky(2) of
the second kind and of order zero by

2Ki(2) = —Ki(2) — 2Ko(2).
Consequently the distribution is

(26) wm=§m@
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or, from (19),
(27) Y(R) = 26 "Ko(2¢7"")
where the function Ky(2) is defined by

(28)  Ko(e) = —(v —1g2 +1g2) E() ly

#26) anlried)

Finally the asymptotic distribution ¢(R) of the reduced range may be written
from (27) and (28)

(285) y@) = 3 2O A DB (g 5y 4 25
We first investigate the analytic behavior and the order of magnitude of the
probability ¥(R) and the distribution ¥/(R) for large negative, and large positive
values of the reduced range, i.e. for large and small values of the positive variable
z. If zis solarge that
6(3312)

’_3 ——
(29) z 3 <1

the expressions for K;(2) and K,(z) become [14], p. 271,

/T3 15
K@) =4/ 5 (+8z 12822

. T —s _1_ 9
Ko@) = /‘g ¢ <1 T8 + 128z2>

The probability ¥(R) becomes, from (24) and (19),

/ /" _R_, —@m 15 R>
(25") \I/(R)—\/-;rexp[ 7= % ](1-1- —i5¢ )
The condition (29) holds, say, for R = —4. The numerical calculation leads,
for W(—4), to the order of magnitude 107°,

In the same way, the distribution y(R) becomes, from (26) and (19), for large
negative reduced ranges

@7 V(R) = \/} expl:—3—4:]'IE — 2e~(R/2):|< o2 + m )

This expression cannot be obtained from (25’) since the approximations for
Ky(z) and K,(z) used do not fulfill the relations between the derivatives given
above. The order of magnitude of ¥(—4) is 107°.

Thus the probability ¥(R) and the distribution ¢(R) may be neglected for
R =< —4. This removes the importance of the lower limit B = —2au stated
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in (10"). If au = 2, the distribution of the range may be dealt with as if it

were practically unlimited toward the left.
For large positive reduced ranges to which correspond small values of z, say

(29/) z3 — 86—(3R/2) << 1
the Bessel functions K;(z) and Ko(z) become, from (23) and (28)
3 3
, - \(2 2 o (2 ?3)
(23) Kl(Z)—<"/+lg2><2+16)+z <4+64
’ 2 2 2 3
(28) Kole) = —('y+lg§>(1 +Z)+Z+i%‘

In this case we are interested to know how far the probability ¥(R) differs from
unity. Consequently we calculate 1 — ¥(R) and obtain, from (24) and (23')

2 2 2
1 — ¥(R) = —%—[(7—{— lg-;)<1 +%)— %—%]

The right side becomes, from (19)

—R _ R " 1 5 _g]
(-t D) (14 5) 4+
—R G—R 5 —R
=e¢"| (R — 2y) 1+—2-— +1+Ze
or
[ p _ e 5\1_ —z/p _ e "\ 3¢
e [R 2'Y+1+—2—(R 27-!-9)]— (R 2’Y+1)<1 +7)+T'
If R is so large that
Pl
we simply have
(25") 1—-¥R)=¢ ™ R—-—2v+1).

For example, for B = 10, the preceding condition is satisfied and 1 — ¥(R) is
of the order 5.107*.

In the same manner we calculate the density of probability ¥(R) for large
reduced ranges. From (26), (19) and (28’) we obtain

wm =25 [(B-v) o+ o 4 om g o],

By neglecting ¢ ** < R, the right side becomes
e (R—2)A+ ") +2 " =¢"R—2y+ ¢ "R — 2y + 2)]
whence

Y(R) = ¢ *(B — 29)(1 + ¢ ®) + 27~
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In first approximation we obtain

(27") ¥(R) = ¢ (R — 2v)

a formula which may also be derived directly from (25). The density of
probability is of the order 10~ for R = 10.

From the formulae (25’) and (27’) valid for-large negative values of R, and
from the formulae (25”") and (27’) valid for large positive values of R follow the
boundary conditions

. lﬁ(R) —(RI2)  1: ‘I/(R) _ R — 2y
R];I-I—neo\I’(R)—e ’Rlig_lwl—\I/(R)_R—2'y+l

For the construction of tables of the distribution ¥(R) and the probability

Y(R) of the reduced range it is sufficient to consider the interval

-3 <Rk <10

The two functions K;(z) and Ky(2) have been tabulated [14] and [19]. Hence
the probability and the distribution could be calculated from such tables of the
Bessel functions. This procedure, however, was only used to obtain boundary
values. The tables I and Ia are based on computations made in the Calculation
and Ballistics Department at the Naval Proving Ground Dahlgren by stepwise
integration of the differential equation (17) using the special Relay Calculator
of the International Business Machines Corporation.?

Table I gives the probability ¥(R) (col. 2) and the distribution ¢(R) (col. 4)
for the reduced ranges —3 < R < 10.5 in intervais AR = 0.5. The differences
AY given in col. 3 are taken from the original figures.

For different uses it is necessary to know the reduced range as a function of
its probability. This relation is shown in Table Ia. The first column gives the
probability, the first line gives the last decimal of this probability, and the cells
give the reduced range corresponding to the probability obtained from the
combination of the first column and the first line. For example: The reduced
range B = —3.20 corresponds to the probability ¥(R) = 0.0002, and the reduced
range R = 10.44 corresponds to the probability ¥(R) = 0.9997.

This table may be used for obtaining the percentage points of the reduced
range. The mode R, the median R calculated by the Naval Proving Ground
and the mean R obtained from (14) and (10) are

(30) R = 0.506366440; R = 0.928597642; R = 1.154431330.

A probability paper for the range may be constructed in the following way: The
observed ranges w are plotted on the vertical axis; the reduced ranges E on a
horizontal axis. The abscissa shows the probabilities

¥(R) = G(w)

3 The author wishes to express his sincere appreciation for the permission to use these
computations. The original tables give the probability and the distribution to 8significant
decimal places at intervals AR = 1/100. Lack of space prevents the reproduction of these
tables.
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TABLE 1

395

Asymptotic Probability and Asymptotic Disiribution of the Reduced Range

1

2

3

4

Reduced Range Probability Difference Distribution
R ¥ (R) AY ¥ (R)
-3.0 .00050 .00212
.00274

—2.5 .00324 .01057
.01032

—2.0 .01356 .03386
.02693

—1.5 .04048 .07705
.05251

-1.0 .09299 .13419
.08141

- .5 .17440 .18969
.10533

.0 .27973 22779
.11821

.5 .39794 .24075
.11859

1.0 .51654 .23021
.10891

1.5 .62545 .20346
.09327

2.0 L71872 .16898
.07557

2.5 .79429 .13360
.05860

3.0 .85289 .10157
.04386

3.5 .89675 .07483
.03192

4.0 .92867 .05375
.02270

4.5 .95136 .03783
.01584

5.0 .96721 .02618
.01089

5.5 .97810 .01787
.00739

6.0 .98549 .01205

.00496
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TABLE I—Concluded

1 2 3 4
Reduced Range Probability Difference Distribution
R ¥ (R) AY ¥ (R)
6.5 .99045 .00805
.00330
7.0 .99375 .00534
.00218
7.5 .99594 .00351
.00143
8.0 .99737 .00230
.00093
8.5 .99830 .00150
.00061
9.0 .99891 .00097
.00039
9.5 .99930 .00062
.00025
10.0 .99955 .00040
.00016
10.5 .99972 .00026

corresponding to the reduced ranges R. If the observations follow the theory,
the observed ranges are scattered around the straight line

(10") w=2u + B
o

If the samples are drawn simultaneously, and if there is a constant interval of
time between the drawings, this interval may be used as unit of time for the
construction of the return periods T(R) and ;T(R) of a range equal to, or larger
than (smaller than) R where

1

T =r=w

R
1 (R) - ‘I’( R) .

The first (second) notion applies to the range above (below) the median. The
return periods are shown in an upper parallel to the abscissa.

A scheme for this paper is given in Fig. 3. Such a paper will allow a graphical
test for the fit of the observed ranges to our theory, and avoids any numerical
calculations. Obviously this method may only be used if the initial distribution
is symmetrical, unlimited, and of the exponential type, and if the sample sizg
is so large that the asymptotic distribution holds,
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6. The range, the midrange, and the extremes. The asymptotic dis-
tribution (27) of the reduced range was obtained by convolution of the asympto-
tic distributions (5) of the extremes. The same method leads to the asymptotic
distribution of the reduced midrange [8]

(31) v = a(; + ).
TABLE IA
The Reduced Range R as Function of Iis Probability ¥ (R)

v ([R) | 0 1 2 3 4 5 6 7 8 9
.000| -— *  1—3.20{—3.12|—3.05|—3.00|—2.96|—2.92|{—2.89|—2.86
.00 — |—2.83]—2.64|—2.52|—2.43|—2.36|—2.30|—2.25|—2.20|—2.16
.0 — |—2.12|—1.84/—1.65|—1.51|—1.39|—1.28/—1.19|—1.10|—1.02
.1 |—0.95—0.88/—0.81|—0.75/—0.69|—0.63|—0.58—0.52|—0.47|—0.42
.2 |—0.37/—0.32|—0.27/—0.22|—0.18/—0.13|—0.09|—0.04; 0.00] 0.04
.3 0.09] 0.13] 0.17] 0.22| 0.26| 0.30] 0.34] 0.38] 0.43| 0.47
4 0.51] 0.55| 0.59| 0.63] 0.68 0.72| 0.76] 0.80, 0.84] 0.89
5 0.93| 0.97| 1.02] 1.06| 1.10, 1.15 1.19] 1.24] 1.28 1.33
6 1.38] 1.43] 1.47| 1.52] 1.57| 1.62] 1.67] 1.73] 1.78| 1.84
7 1.89] 1.95] 2.01] 2.07| 2.13| 2.19] 2.26| 2.33| 2.40] 2.47
8 2.54] 2.62| 2.70| 2.79| 2.88 2.97, 3.07| 3.18 3.29 3.41
.9 3.54) 3.69] 3.85| 4.03] 4.23| 4.46| 4.75] 5.11) 5.61] 6.45
.99 6.45| 6.57| 6.71| 6.87| 7.05 7.26] 7.52| 7.85 8.31] 9.10
.999| 9.10[ 9.22] 9.35 9.50, 9.67| 9.88] 10.12| 10.44| * *

* These values have not been calculated.

On the other hand, the asymptotic distributions of the reduced extremes are
obtained by introducing the transformations

(32) 1= al® + u); Yo = a(@ — u)

into formulas (5). It is interesting to compare these four distributions and four
probabilities with each other. Thisis done in Figures 1 and 2. The probability
and the distribution of the midrange are practically identical with the probability
and distribution of the smallest value, for small values of the midrange, and
become practically identical with the probability and distribution of the largest
value for large values of the midrange. Fig. 2 shows that the asymptotic dis-
tribution of the reduced range is less asymmetrical than the asymptotic distribu-
tions of the reduced extremes.
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Table II contains some characteristic values for these four asymptotic dis-
tributions. The first three columns are obtained from previous publications
[6, 8]. The mean range is equal to the range of the means for the extremes.
The median of the range is larger than the range from the median of the largest
to the median of the smallest value. The mode of the range is slightly smaller
than the mean of the largest value. These statements hold, of course, only for

the reduced variates.
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Fig. 2
From the mode R of the reduced range given in equation (30) and the trans-
formation (10), the mode @ of the range itself is obtained as
w = 2u -+ 1_2
[¢4
whereas the difference of the modes of the largest and of the smallest values is
:i,, - il = 2u.

Consequently

(33) w=f‘tn""§71+

R | b
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For a symmetrical initial distribution of the exponential type the mode of the
range converges toward the range of the modes of the smallest and of the largest
value, provided that the parameter a increases without limit with the sample
size. Thus this convergence does not hold for all symmetrical distributions.
The last two lines in Table II give the four probabilities corresponding to the
intervals from the mean p minus once (twice) the standard deviation o, up to
the mean plus once (twice) the standard deviation. The first probability for

TABLE 11
Characteristics for the 4 Asymptotic Reduced Distributions
1 2 3 4 5
Characteristic Largest Value Smallest Value Midrange Range

Mode 0 0 0 .506
Expectation vy = .57722 | = — 57722 0 2v = 1.15444
Median —lglg2 = .36651 | = —.36651 0 .929
Seminvariant char. ra—it) T+ @) 1 —1¢)-TA+1) T2(1 — t)

function

S w2 w2
Variance 5= 1.64493 = 1.64493 3 = 3.28986
First 4+ second mo- B = 1.20857| —1.29857 0 .64928

ment quotient By = 5.4 5.4 4.2 4.2
95% Probability 2.97 1.10 2.94 4.46
99% Probability 4.60 1.53 4.60 6.45
Fu+o) — F(u — o) .72 .72 .72 .1
F(u+20) — F(u — 20) .90 .90 .95 .95

the four distributions is about the same as for the normal distribution. The
second probability for the range and the midrange is about the same as for
the normal one.

7. The asymptotic distribution of the range for a symmetrical variate.
The asymptotic distribution of the range R is, of course, independent of
the sample size, and parameter-free. Both statements do not hold for the
distribution g(w) of the range proper which is, from (11)

(34) g(w) = ola(w — 2u)].

In this formula, the range is expressed in the same units as the initial variate.
The parameters o and  are functions of the sample size n, the function depending
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upon the initial distribution. From equations (6), (8), (14) follows that an
increase of the sample size has two influences on the distribution of the range.
The increase of the parameter  shifts the distribution toward the right without
changing its form, whereas the parameter « influences the shape of the distribu-
tion. If « increases (decreases) with n, the distribution of the range shrinks
(spreads) with increasing sample size. If « is independent of n, an increase of
the sample size does not change the shape of the distribution. Only in the first
case may we increase the precision of the range by increasing the sample size.
The two parameters thus influence the range in the same way as they influence
the extreme values.

To use equation (34) for a given initial distribution and a given sample size,
we have to determine the expected largest value 4 and the parameter « as func-
tions of n. We may use the definitions (6), (7), (8) if the initial distribution is
known and of the exponential type, and if the sample size is so large that the
most probable largest value is sufficiently near to the solution of (7).

As a first example, consider the so-called logistic distribution. This prob-

ability is

(35) Px) = (1 + 97
The initial distribution is
(385") e(x) = ®(x)(1 — B(x))
and the derivative is
(35") ¢'(x) = ®(x)(1 — &(x))(1 — 2&(x)).
Equation (6) becomes
" N
1+ = n—1

whence the expected largest value
(36) u = lgln — 1).

The most probable largest value %, for n observations is obtained from (7).
This equation becomes, from equation (35)

(n — 1A — &) = —1 + 22(Z»)

n
whence ®(F,) = ntl

Equation (35) leads to the most probable largest value

(36") Zn = lgn.

Even for n as small as 30 the difference between %, and « is less than 19%,. Con-
sequently the asymptotic form of the distribution of the range may be used even
for small samples. The two parameters are

n
@37 u = lgn; a= "7
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Since a converges toward unity, an increase of the sample size shifts the distribu-
tion of the range toward the right without influencing its shape: the precision of
any estimate made from the range cannot be increased by increasing the sample
size.

The characteristic ranges introduced in paragraph 5 are obtained immediately:
the mean W, the mode %, the median range % and the ranges w.gs and w.g9

W= I1gn 4+ 1.154; @ = lgn 4.506;
w=lgn+ .929‘; wes = lgn + 4.46; we = lgn + 6.45

are parallel straight lines if traced as functions of the sample size n on semi-
logarithmic paper.

For the normal distribution we cannot expect such simple results. Here, u
and « can only be calculated as numerical functions of n although limiting forms
of these functions are known. The parameter « increases with n, and the
standard error of the range decreases without limit although very slowly. The
logistic distribution belongs to the first, the normal distribution to the second
class of initial distributions of the exponential type.

The probabilities and the distributions of the range for normal samples of
size 5, 10, and 20 as calculated by E. S. Pearson and H. O. Hartley [16] are
traced in Figures 4 and 5. Our aim is to trace the corresponding asymptotic
probabilities and distributions in order to see how far the asymptotic ranges
differ from the exact ones. However, we have first to settle the preliminary
question how far the most probable largest value %, differs from the expected
largest value u. The most probable largest value %, is obtained from (7) which
becomes, for the normal distribution, '

(38) i'nq’(in) = ('Il - 1)¢(57n)-

The results Z, as functions of n are shown in Table III cols. 1 and 2. The
expected values u obtained from (6) are given in col. 3. For small samples, the
two values Z, and u differ widely, as might be expected. We are inclined to
conclude that the asymptotic distribution of the range cannot hold for small
samples. However, the only legitimate conclusion to be drawn is, that we can-
not calculate the two parameters in the way stated before (6) and (8). Instead,
we estimate them directly from the observations. The question of the most effi-
cient estimates of these parameters is not yet solved. The simplest way is to
use the mean range W, and the standard deviation of the range s.,, as given by
Tippett [20] and Pearson [15]. To distinguish these estimates from the asympto-
tic values, we write the estimates with an index n. From (14) we obtain

1 /3

(39) — =YX 6un; 2y, =ﬂ'),.—gz.
Op ™ Ap

Table III gives the calculated means w, and standard deviations o¢,,. of the
range, and the estimates 1/a, and 2u, . Fig. 6 shows how the most probable
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largest values %, approach the expected largest value « with increasing sample
size. The estimate u, quickly approaches w. Besides we trace the mean range
W, , the standard error of the range cw,», and 1/a, which is proportional to it.
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From col. 8 follows that the condition au = 2 is fulfilled from » = 6 onward.
The ranges obtained from the transformations

(40) w = 2u, + g'

n

are given in Table IV, cols. 3-7. The asymptotic probabilities of the range as
obtained from the combination of columns 37, and col. 2 of Table IV are traced
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in Fig. 4 as separated points. The asymptotic probabilities are situated very
near to the exact ones. Therefore the same method was used to calculate the
asymptotic probabilities of the range for n = 50 and n = 100 which have not
been calculated by Pearson. They too are traced in Fig. 4.
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The asymptotic probabilities of the range hold even for small normal samples.
However, the parameters obtained from the exact distribution differ considerably
from their asymptotic values. In other words: The asymptotic probabilities of the
range hold even for small normal samples provided that the parameters are taken
from the observations.

To compare the asymptotic distributions of the normal range to the calculated
distributions, we attribute the asymptotic differences A¥/a, for a unit interval
Aw = 1 to the middle of the corresponding intervals. The results are traced in
Fig. 5 for n = 5, 10, 20, 50, 100. On the other hand, we take the differences
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AY for unit intervals from Pearson’s tables, and trace them in the same graph.
The fit of the calculated to the asymptotic values may be considered satisfactory.

TABLE III
Estimate of Parameters from the Calculated Distributions
of the Normal Range
1 2 | 3 4 5 6 7 8
L t Val Estimated t
Sample |2V | ange Sandard | BsUTated prrameters) g o
size n Modal | Expected Wa p 2al
% u i 1/an 2u, i
3 .765 .431 1.693 .8884 .4898 | 1.128 2.30
4 .938 .674 2.059 .8798 .4851 1.499 3.09

5 1.061 .842 2.326 .8641 | .4764 | 1.776 3.73
10 1.419 | 1.282 3.078 797 .439 2.571 5.86
20 1.740 | 1.645 3.735 729 .402 3.271 8.14
50 2.126 | 2.054 4.498 .653 .360 4.082 | 11.34

100 2.377 | 2.326 5.015 .605 .334 4.630 | 13.86

TABLE 1V
Asymptotic Probabilities for Normal Ranges Taken from Small Samples
1 2 I O I |y
Reduced Probability Normal ranges w = 2u, + R/ay for sample sizes
PR GW=Y® | T T T ] n=20 | n=50 | m= 100
-3 .000 .35 1.25 2.07 3.00 3.62
-2 .014 .82 1.69 | 2.47 3.36 3.96
-1 .093 1.30 2.13 2.87 3.72 4.30
0 .280 1.78 2.57 3.27 4.08 4.63
1 .517 2.52 3.01 3.67 4.44 4.96
2 .719 2.73 3.45 4.07 4.80 5.30
3 .853 3.21 3.89 4.48 5.16 5.63
4 .929 3.68 4.33 4.88 5.52 5.97
5 .967 4.16 4.77 5.28 5.88 6.30
6 .985 4.63 5.20 5.68 6.24 6.63
7 .994 5.11 5.64 6.09 ©6.60 6.97

Fig. 5 shows furthermore how the distributions of the range are shifted toward
the right and become more concentrated for increasing sample sizes.

As an example for the practical application of the asymptotic distribution of
the range, we use an observed distribution of 50 ranges taken from samples of
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n = 14 normal values given in Freeman’s book [5] p. 128. The observed step
function is traced in Fig. 7. For reasons given in a previous article [7] we
attribute the cumulative frequency .5 to the smallest range 3, and the cumulative
frequency 49.5 to the largest range 18. To compare this step function with the
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probability G(w), we estimate the two parameters u, and a, from formula (39).
The:mean range W, and the estimate s.,, of the standard deviation of the ranges
are

w = 10.68; Swn = 2.93.

Consequently we obtain, from (39)

L 61 . 2u, = 8.82.

Oy
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The theoretical ranges are thus, from (40),

w = 8.82 4+ 1.61 R.
The corresponding probabilities G(w) taken from Table I are traced in Fig. 7.
The fit of the theory to the observations is certainly satisfactory, especially if
we take into account that the ranges are given in integer numbers only.

8. The mth range and the asymmetcical case. An obvious generalization
of the theory as established in paragraph 4 consists in the construction of the
asymptotic distribution of the mth range for an unlimited symmetrical distribu-
tion of the exponential type. The mth range is the positive distance from the
mth observation from above, z,, , to the mth observation from below, nz. We
suppose m to be very small compared to the sample size. Under the conditions
stated in the beginning, the joint distribution W,(m, =) of the mth extreme
values splits into the product of the asymptotic distribution of the mth extreme
value from above, fn(z.), by the asymptotic distribution of the mth extreme
value from below, »f(.z). Here, [6]

fm(xm) = am eXp [—-mam(xm —_ um) _ me—am(zm—u,,.)]

mf(mx) = am eXp [motm (wx + Um) — meam(mz-l—u,,,)]

The sample size must be so large that the most probable mth extreme value %,
is sufficiently near to u., which is defined as the solution of

<I>(um)=1—21'.
n

The factor a,, defined by

()
T 1 — B(u)

is related to the asymptotic standard error ¢., of the mth extreme value by

1
O Om = Z 2.
y=m V.

U

The joint asymptotic distribution (.2, Znm) of the mth smallest value and the
mth range

(41) Wy = Tm — mk

18

% (mZtum) __ _am(mmm_"‘m)]

0 (nl, W) = o €Xp [— Motm (W — 2uy) — me me

The asymptotic distribution g(w.) of the mth range is, dropping the index m of
the variable ..z,

+o0
g(wn) = afye memtomum) f exp [— me

00

W (21 ) —am(z-l-lv,,.~um)] dz

— me
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Again we introduce a reduced range R, defined by
(42) an(Wm — 2Upm) = Rn = —2amln
and put for the integration
am (T + Unm) = y.
Then the asymptotic distribution ¢/(R.) of the reduced mth range is

+o0
(43) Y(Ry) = ¢ ™Fm [ exp[—me® — me V"Fm| dy.
The probability ¥(R..) for the mth range
B
v®) = [ 9

cannot be reduced to a single integral. This is due to the fact that the proba-
bilities of the mth extreme values cannot be written down except in the integral
form [6]. No differential equation similar to (17) exists. However, the function
(43) could be calculated by numerical methods. The mean E.. , the generating
function and the moments of the mth range have been given in a previous
paper [8].

For sake of completeness, consider finally an unlimited asymmetrical initial
distribution of the exponential type. In this case, the joint distribution of the
smallest and of the largest value splits again, for large samples, into the product
of the asymptotic distributions fi(x:) and f.(z,) of the smallest and of the largest
values which are now [6]

"‘1(971_“1)] .
b

fl(xl) = oy explay(z; — U) — e

'—"‘n(xn_“n)]

fn(xn> = Qn exp[—an(xn - un) — €

Here, a, and u, are defined, as previously, by “(6) and (8). The sample must
be so large that the most probable smallest value %, is sufficiently near to the
solution of

<I>(u1) = } .
n
The factor a; defined by
_ o(u1)
M= ®(uy)

is related to the asymptotic standard error of the smallest value by

™
101 = '\—/_f-;

The joint asymptotic distribution of the smallest value x; and the range w

w2, w) = aja, expla; (@ — u) — an(@ +w — u,) — eE1mn) _ gmen(zitu—ua)
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contains four parameters instead of the two which exist in the symmetrical case.
However, the number of parameters may be reduced to one. We introduce a
reduced range R defined by

(44) R = an(w — un + wy)

being the range itself minus the range of the modes divided by a factor pro-
portional to the standard error of the largest value. If we put

(45) (T — u) = y; — =4
the distribution ¢(R) of the reduced range becomes, in the asymmetrical case,

+w '
(46) Y(R) = e_Rf exply(l — B) — ¢¥ — PR dy

and the probability ¥(R) for the reduced range is
+o0
47 ¥(R) = f exply — eV — ¢ P 7" dy
a formula which may immediately be verified by differentiation with respect to
R. The mode R of the range is the solution of

~ Rt
yR) =" f exply(l — 28) — R — ¥ — ¢ """ dy.

Contrary to the symmetrical case, the latter integral cannot be expressed by the
probability, and no simple differential equation similar to (17) exists. The ex-
pressions (46) and (47) contain a single constant 8 measuring the asymmetry of
the initial distribution. In the symmetrical case, 8 = 1, we obtain, of course, the
previous formulas (12) and (13). In the asymmetrical case, the mean, the
variance, and the higher moments of the mth range may be derived from the
generating function given in a previous paper [8].

The asymptotic distribution of the mth range in the asymmetrical case can
easily be obtained by combining the two procedures used in this paragraph.
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ADDITION AT PROOF READING:

G. Elfving’s article ‘“The asymptotical distribution of range in samples from a normal
population”, Biometrika, Vol. 35 (1947), appeared when this manuscript was ready for
print. Elfving considers a probability transformation of the range whereas we deal with
the range itself. His distribution requires the knowledge of the initial distribution and
of the sample size, whereas this knowledge is not required in our asymptotic formula.



