AN ESSENTIALLY COMPLETE CLASS OF ADMISSIBLE DECISION
FUNCTIONS

By ABraHAM WALD
Columbia University

Summary. With any statistical decision procedure (function) there will be
associated a risk function r(§) where r(6) denotes the risk due to possible wrong
decisions when 6 is the true parameter point. If an a priori probability distribu-
tion of 6 is given, a decision procedure which minimizes the expected value of
r(6) is called the Bayes solution of the problem. The main result in this note
may be stated as follows: Consider the class C of decision procedures consisting
of all Bayes solutions corresponding to all possible a priori distributions of 6.
Under some weak conditions, for any decision procedure T not in C there exists
a decision procedure T* in C such that r*(§) < r(0) identically in 6. Here r(6)
is the risk function associated with T', and 7*(6) is the risk function associated
with 7*. Applications of this result to the problem of testing a hypothesis are
made.

1. Introduction. In some previous publications [1], [2] the author has
considered the following general problem of statistical inference: Let
X = (X1, -+, X.) be a set of chance variables. Suppose that the only infor-
mation we have concerning the joint distribution function F of these chance
variables is that F is an element of a given class Q of distribution functions.
Suppose, furthermore, that a class D of possible decisions d is given one of which
is to be made on the basis of an observation z = (21, - -, ) on the chance
vector X. The problem is then to construct a function d(z), called statistical
decision function, which associates with each sample point x an element d(x)
of D so that the decision d(z) is made when the sample point z is observed. A
statistical decision function d(x) is defined over all possible points x of the sample

space and for each sample point 2 the value of the function is an element of D.’

Each element d of D will usually be interpreted as a decision to accept the
hypothesis that the unknown distribution # of X belongs to a certain subclass
o of Q. Different elements d of D correspond to different subclasses w of Q.

The problem of testing the hypothesis H that the unknown distribution func-
tion F belongs to a given subclass w of @, is contained as a special case in the
above general problem. The space D will then contain only two elements,
dy and d», where d; denotes the decision of accepting H and d» denotes the
decision of rejecting H.

As in [1] and [2], we shall assume also here that Q is a k-parameter family of
distribution functions. Then each element of @ may be represented by a point

6 = (61, ---, 0, called parameter point, in the k-dimensional Cartesian space.
The class € is then represented by a subset of the £-dimensional Cartesian space,
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called parameter space. We shall, therefore, refer to @ as the parameter space
and to its elements as parameter points.

The merits of any particular decision function d(z) will usually depend on
the relative importance of the various possible errors caused by not selecting
the proper €lement d of D. The relative importance of such errors has been
described in [1] and [2] by a weight function W (6, d) defined over the product of
Qand D. For any pair (6, d) the value of W (6, d) is non-negative and expresses
the loss caused by taking the decision d when 6 is the true parameter point.
For any given decision function d(z) the expected value of the loss is given by

(1.1) ' r(6) = [M WI6, d(x)] dF (z)

where M denotes the sample space and F(z) is the joint cumulative distribution of
X = (X1, -+, X,) corresponding to the parameter point 6.

The function 7(6) is defined over the parameter space @ and is called the risk
function. The shape of the risk function r(6) will, in general, be affected by the
decision function d(z) used. To put this dependence in evidence, we shall use
the symbol r[6 | d(x)] to denote the risk function 7(6) associated with the deci-
sion function d(z).

A decision function d(z) is said to be uniformly better than the decision
function d*(z) if

(1.2) 0 | d(z)] = r[6 | d*(2)]

for all 6 and if there exists at least one point 6 for which the inequality.sign holds
in (1.2). A decision function d(z) is said to be admissible if no other uniformly
better decision function exists.

A class C of admissible decision functions will be said to be essentially complete
if for any decision function d(x) not in C there exists a decision function d*(z)
in C such that

[0 | d*(z)] = 1[0 | d(z)]

for all 4.
In section 2 we shall formulate certain assumptions which will then be used

in section 3 to derive an essentially complete class of admissible decision func-
tions. In section 4 applications are made to the problem of testing a hypothesis.

In a recent paper Lehmann [3] obtained an essentially complete class of
admissible tests for each hypothesis H of a certain restricted class of simple
hypotheses. The restrictions imposed on € in Lehmann’s paper are essentially
those formulated by Neyman [4], [5] to insure the existence of the type A,
(uniformly most powerful unbiassed) test. Our definition of an essentially com-
plete class of admissible decision functions agrees with that given by Lehmann
when the problem is to test a hypothesis and the weight function W (0, d) can
take only the values 0 and 1.
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2. Assumptions. Throughout this paper we shall make the following as-
sumptions:

Assumption 1: The parameter space @ is a bounded and closed subset of a
finite dimensional, say k-dimensional, Cartesian space.

We shall introduce the following convergence definition in the space D: a
sequence {dn}, (m = 1,2, ---, ad inf.), of elements of D is said to converge
to the element d of D if

lim W (6, dn) = W(4, d)

uniformly in 6.

Assumption 2: The space D is compact and, for any d, W (6, d) is a continuous
function of 6.

Assumption 3: For any point 6 of Q the joint distribution function of
X = (X1, -, X,) admits a density function p(z, 6) for all points = of the
n-dimensional Cartesian space M (sample space). The density function p(z, 6)
is assumed to be continuous in = and 6 jointly.

In what follows we shall mean by a distribution function f(6) of 6 a cumula-

tive distribution function for which fn df(6) = 1 and for which fﬂ W0, d)df (6)

is not zero identically in d.

Assumption 4: For any point z of M, except perhaps for a set of measure
zero, and for any cumulative distribution function f(6) there exists one and
only one element of D for which the expression

(21) [ e, iz, 0 o)

takes its minimum value with reSpect to d.

Assumptions 1 and 3 in this paper are exactly the same as Assumptions 1 and 3
in [2]. The formulation of Assumptions 2 and 4 is somewhat different from
that given in [2]. This is mainly due to the fact that in [2] the space D has the
same elements as @, while here this is not necessarily so. It can be verified
without difficulty that this slight modification of the assumptions does not
affect in any way the validity of the results obtained in [2]. Thus, we shall be
able to make use of any theorems proved in [2] for the purposes of the present

paper.

3. Derivation of an essentially complete class of admissible decision func-
tions. For any distribution function f(6) defined over @ and for any sample
point z let d(z, f) denote the element of D for which the expression (2.1) takes
its minimum value. It follows easily from the definition of r(6) and d(z, f) that

(31) [ Ae1d@, 7 @ s [ 0] @ afco
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for any decision function d*(z). If we interpret f(6) as an a priori probability
distribution of 6, inequality (3.1) says that the expected value of r(§) takes its
minimum value for the decision function d(z, f). We shall refer to d(z, f) as
the Bayes’ solution of the problem corresponding to the a priori probability
distribution f(6). _

We shall now prove the following theorem.

TrEOREM 3.1. The class C of all Bayes’ solutions d(z, f) corresponding to all
possible a priore distributions f(6) is an essentially complete class of admissible
decision functions. 7

Proor. First we show that for any distribution f(6) the decision function
d(z, f) is admissible. Let d(x) be a decision function such that

6| d(@)] = r[0 | d(z, f)]
for all . Then

3.2 [ ro1a@n a6 = [ rio] at, 1)1 ag6).

From the definition of d(z, f) it follows that the equality sign must hold in
3.2), ie.,

(33) [ re1d@1 a0 = [ 01 dez, 11 dpco.

From the second half of Theorem 4.2 in [2] it then follows that
[0 | d@)] = r[6 | d(=, )]

for all . Hence d(z, f) is an admissible decision function. .

We shall now show that the class C' of decision functions d(z, f) corresponding
to all possible a priori distributions f(6) is essentially complete. Let do(x) be
any decision function not in the class C. The essential completeness of the
class C is proved if we can show that there exists a distribution f(6) such that

(34) (6 | d(z, f)] < [0 | do()]
for all 6.
To prove (3.4) we shall consider the weight function
(3.5) W0, d) = W(6,d) — r[0] do(x)] + 1V£ax 716 | do()]

The maximum of {8 | do(z)] exists, since according to Theorem 4.1 in [2] 7[6 | do(z)]
is a continuous function of 6. Clearly, Assumptions 1-4 remain valid if we
replace W (6, d) by W*(6,d). Let r*[6 | d(x)] denote the risk function associated
with the decision function d(z) if the weight function is given by W*(9, d).
According to Theorem 5.2 in [2] there exists a decision function d*(z) such that

(3.6)" Moa.x ™0 | d*(x)] = Moax [0 | d(z)]
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for any decision function d(x). Since
Moa,x ™[0 | do(2)] = Moax [0 | do(z)]

it follows from (3.6) that

3.7 Moa.x [0 | d*(z)] < Moax 70 | do(z)].
Inequalities (3.5) and (3.7) imply

(3.8) (6 | d*(2)] = 1[0 | do()]

for all 6.

For any distribution f(6) we shall denote by d*(x, f) the Bayes solution of
the problem corresponding to the a priori distribution f(6) when the weight
function is given by W*(6, d). Since W*(9, d) — W(6, d) depends only on 6
but not on d, one can easily verify that d*(z, f) = d(z, f). It follows from
Theorems 4.4 and 5.1 in [2] that there exists a distribution f(6), the so-called
least favorable distribution, such that (3.6) remains valid if we replace d*(x)
by d*(z, 7). Thus we can put

3.9 d*(z) = d*(z, f) = d(=, f).
Hence, from (3.8) we obtain

(6 | d(z, )] = 710 | do(=)]
for all . This completes the proof of Theorem 3.1.

4. Applications to the problem of testing a hypothesis. In this section we
shall apply the results of the preceding section to the problem of testing the
hypothesis H that the true parameter point is included in a given subset w of Q.
We shall assume that  is an open subset of . The space D consists now only
of two elements, d; and dz , where d; denotes the decision of accepting H and ds
denotes the decision of rejecting H.

We shall assume that the W (0, dy) is equal to zero for points 8 in the interior
or on the boundary of w, and positive elsewhere. Similarly, W (6, d,) will be
assumed to be positive for points 6 inside w and zero outside w. For any a priori
distribution f(6) the Bayes solution is given by the following test: We reject
the hypothesis H if (and only if)*

@y [ W a0 a0 > [ We, e 0 4.
—0 y Y@

Thus, the class C of regions (4.1), corresponding to all possible distributions
J(6), is an essentially complete class of admissible critical regions.
For any critical region R we shall denote the probability that the sample z

1 Whether the equality sign is included or not in (4.1) is of no consequence, since by
Assumption 4 the measure of the set of points z for which the equality holds in (4.1) is zero.
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will fall in R when 6 is true by P(6 | R). It follows from Lemma 4.4 in [2] and
Assumption 3 that P(6 | R) is a continuous function of  for any region R.
Since W (6, dy) is positive in the interior of @ — w, and W(6, d;) is positive in w,
the class C' of regions defined in (4.1) will have the following properties:

(a) For any region R outside the class C there exists a region B* in C such that

P(O|R*) S P(6]R) inw
and
P(6|R*) > P(6|R)inQ — w.
(b) If R and R* are members of C such that
P(6|R*) < P(6|R) inw
and
P(6|R*) > P(6|R) in @ — w,
then
P(0 | R*) = P(6 | R) for all 6.

For any distribution g(6) consider the critical region consisting of all sample
points z satisfying

42 [ 2,0 4@ > [ 5@, 0) dy(o).

Let C* be the class of regions (4.2) corresponding to all possible distributions g(6).
One can easily verify that any region in C is also a member of C*. Thus, the
following theorem holds:

THEOREM 4.1 Suppose that Assumptions 1 and 3 are fulfilled and w ts an open
subset of Q. Suppose, furthermore, that for any distribution g(0) the set of sample

points x satisfying the equation )
fn _, P 0) dg(0) = fw (=, 6) dg(6)

has the measure zero. Then, for any region R outside the class C* there will be a
region R* in C* such that
PO |R*) < P(O|R) tnw
and
PO |R*) = P(O|R) in @ — w.
Addition at proof reading:  After this paper was sent to the printer, the author

obtained a generalization of Theorem 3.1 to sequential decision fuuctions, as well as
some other results. They will appear in a forthcoming issue of Econometrica.
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