ABSTRACTS OF PAPERS
Presented December 22, 1947 at the Berkeley Meeting of the Institute

1. The Performance Characteristic of Certain Methods for Obtaining Confidence
Intervals. B. M. Bex~Nerr and J. NeymaN, University of California,
Berkeley.

Certain methods for obtaining confidence limits have been introduced by Bliss, R. A.
Fisher and Paulson. Thus,e.g.,let z; ,y: (i =1, -+, n) represent a sample from a bivari-
ate normal population w1th means E(z;) = &, E(y,) = af and variances and covariance
c,, , c,, ,omy e If Z,7, S, , S,, , Szy are the sainple means, variances and covariance respec-
tively, then in order to determine confidence limits for «, the ratio:

_ V(g — af)
V8 — 28, + 8

may be referred to the appropriate value ¢ of the Student-t distribution. The inequality:
| u | < te may, in general, be solved as a quadratic equation in « to yield two values &, &
which are presumed to be confidence limits for «. In this paper the probability = of being
correct in using such a procedure, i e the performance or operating characteristic, is com-
puted inthelimiting case whena: , a,, , 02y = pooyare assumed to be known. Itisshownthat
= is a function 7(a, £,0z,0y,p) of all the parameters, and in particular of a itself, the quantity
for which confidence limits are supposed to be provided. Similar ‘‘quadratic’’ methods
are also used in certain regression problems, e.g., in determining confidence limits for a
value of z corresponding to an additional value of y when a previous sample regression of y
on z is available; or in determining confidence limits for the intersection point of two popu-
lation regression lines. The performance characteristic of each of these methods is shown
to be a function of the quantity for which the method gives confidence limits.

2. Some Further Results on the Bernoulli Process. T. E. Harris, Douglas
Aircraft Co.

Letz;,25,25, -+ ,beasequence of random variables defined as follows: P(z1 =r) = p,,
r=0,1,2,--,k Ifz,=0,2001 =0. If z. = r, 7 # 0, then 2,4, is distributed as the
sum of r independent random variables, each having the same distribution as z, . It is
assumed that z < 1, where z = E(21). Let N be the smallest value of n such that z,,1 = 0.
A method is given for obtaining an expansion of the moment-generating function of N.
In the case where p, = 0 for » > 3, this expansion takes the form 1 + 1—e*) 1 — po)
F(s), where F(s) = fu(s) — pa(1 — po)fa(s) = 2zpy(1 — po)ifs(s) — -+ , where fi(s) =
(e=* — 2)71, and fu(3) = fa-1(s)(e® — z*)~!. Certain restrictions on the constants p,
insure that this expansion converges for a complex neighborhood of s = 0.

3. Most Powerful Tests of Composite Hypotheses I. Normal Distributions.
E. L. Leamaxy and C. M. StriN, University of California, Berkeley,
California.

Critical regions are determined for testing a composite hypothesis, which are most power-
ful against a particular alternative among all critical regions whose probabilities under the
hypothesis tested are bounded above by the level of significance. These problems have
been considered by Neyman, Pearson and others, subject to the condition that the critical
region be similar. Intestingthe hypothesisspecifying the value of the variance of a normal
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distribution with unknown mean against an alternative with larger variance, and in some
other problems, the best similar region is also most powerful in the sense of this paper.
However, in the analogous problem when the variance under the alternative hypothesis
is less than that under the hypothesis tested, in the case of Student’s hypothesis when the
level of significance is less than 4, and in some other cases, the best similar region is not
most powerful in the sense of this paper. There exist most powerful tests which are quite
good against certain alternatives in some cases where no proper similar region exists.
These results indicate that in some practical cases the standard test is not best if the class
of alternatives is sufficiently restricted.

4. On the Selection of Forecasting Formulas. PaurL G. Hoxr, University of
California, Los .Angeles, California.

Given two competing formulas, v = g(21, -+, z,) and v = h(z;, --- , zm), for forecast-
ing a variable z, a significance test possessing optimum properties is designed for deciding
whether one formula yields significantly better forecasts than the other. The test, which
turns out to be a Student t test,is constructed as a test of the hypothesis Ho : m; = u; against
the alternative Hy : mi = v;, (¢t = 1, +-- , n), in which it is assumed that the variables
%, '+, %y, corresponding to the n samples, are independently normally distributed with
means m; and variances ai = o2,

5. On the Power Function of the ‘“Best” (-test Solution of the Behrens-Fisher
Problem. J. E. WawLsH, Douglas Aireraft Company

The most powerful (-test solution of the Behrens-Fisher problem (one-sided and sym-
metrical) was obtained by Scheffé in Annals of Mathematical Statistics, Vol. 14 {1943), pp-
35-44. This notc derives (approximately) the power efficiency of this ¢-test for the case
in which the ratio of the variances of the normal populations is also known. Let the ¢-test
be based on m sample values from the first normal population and n sample values from the
second normal population, where m < n. For fixed values of m and n, a symmetrical
i-test with significance level 2« has the same power efficiency as a one-sided t-test with
significance level «. For one-sided t-tests with significance level «, the power efficiency

is approximately 50[B + \/B'~’ — 8(m + n)A] /(m 4+ n),where B=2+4+ (m + n)A + K?x/2,
A=1—K%/2(m—1),and Kais the standardized normal deviate exceeded with probability
. This approximation is reasonably accurate for m > 4if @« = .05, m > 5 if a = 025,
m > 6ifa = .01, m > 7if « = .005. Intuitively the power efficiency of a test measures

the percentage of available information per observation which is utilized by that test.

6. On Sequences of Experiments. CHARLES STEIN, University of California,

Berkeley, California.

One performs a sequence of .V experiments to decide between two simple hypotheses
regarding probability distributions of certain observable quantities. At each stage there
is a choice among L experiments and the one chosen yields a random variable. One wishes
to achieve certain upper bounds « and 8 to th'e probabilities of first and second kind errors
respectively, and, subject to these restrictions, to minimize the expected cost under a third
hypothesis. The cost of cach particular sequence of experiments is known. A solution
is obtained, essentially by applying Lagrange’s method and working back from the end
of the experiment. This can be generalized to multiple decision problems. The results
are applied to two-sample tests with the second sample of variable size, and to Wald’s
sequential analysis. As another problem, suppose (X:, Y1), (X2, Y3) --- are independ-
ently distributed with bivariate normal distributions having mean ¢ and covariance matrix
T, both unknown. One tests Ho : £ = 0 against H, : £#S71¢ = 5. A test (not necessarily
optimum) valid within the usual approximation is obtained from the ratio of the p.d.f.
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of Hotelling’s T? under H, to that under Hy. Analogous results hold for the multiple
correlation coefficient, ratio of two variances and test for linear hypothesis.

7. The Effect of Selection Above Definite Lower Limits of Linear Functions of
Normally Distributed Correlated Variables on the Means and Variances of
Other Linear Functions. G. A. Baker, University of California, Davis,
California.

Sometimes certain variables in a system can be observed before other economically or
socially important variables. These variables or linear combinations of them can be used
as a basis of selection at given levels. The questionis: How does selection on these earlier
or more eagily available variables affect the mean and variance of the economically or so-
cially more important variables or, perhaps, linear functions of the more important vari-
ables. The general procedure is clear. We transform to a new system of variables which
contains the linear functions on which selection is performed and the linear functions of
which the means and variances are required as separate variables. The remaining new
variables are eliminated by integration. The final calculation involves the numerical
evaluation of integrals whose integrands are the product of polynomials and normal multi-
variate functions and whose limits-depend on the given levels of selections. The general
ideas are simple but the actual labor of computation in a given case is tedious. An example
is considered in detail.

8. An Inversion Formula for the Distribution of a Ratio of Random Variables.
J. GurLaND, University of California, Berkeley, Calif.

The repeated Cauchy principal value of integrals applied to characteristic functions is
used in obtaining inversion formulae for distribation functions. Let the random variables
X: and X, have a joint distribution function with corresponding characteristic function

—e T
¢(t1, ta). Suppose P{X: < 0} = 0. Letfg(t) dt = Iin(l) ( + f >g(t) dt for any
€ —T e
T—

function g(t). If G(z) is the distribution function of X;/X; then G(z) 4+ G(z — 0) =
1 - 1 [e, —t)
T t
given by Cramer in the case where X and X; are independent ; and differentiation extends
a result of Geary to a much larger class of distribution functions. Further generalizations
of the theory are obtained, and as an example the distribution function of the ratio of quad-
ratic forms of random variables X, , X -+ - X,is considered in the case where X; , X - -+ X,
have a multivariate normal distribution.

dt. This formula is free of restrictions which accompany the formula

9. Independence of Parameters and Sufficient Statistics. E. W. BARANKIN,
University of California, Berkeley, California.

The notions of complete set of independent parameters and minimal set of sufficient statistics
are suitably defined for a class of families of probability densities {p(z:,:-:, Za;
91, -+, %)}, and the order of each of these sets is determined as the rank of a certain
matrix. Second order continuous differentiability is eventually required of the function p;
and certain other conditions are laid down, designed to ensure that the behavior of p in
the large is similar to its behavior in the small when only continuous differentiability is
assumed. The problem of determining the order of a minimal set of sufficient statistics
is made, by certain device, to become identical in character with that of finding the order

“of a complete set of independent parameters. (This is in the nature of these concepts.)
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An explicit method is given for finding a complete set of independent parameters and a
minimal set of sufficient statistics.

—

(Presented December 30, 1947 at New York at the Annual Meeting of the Institute)

1. Distribution of the Circular Serial Correlation Coefficient for Residuals from
a Fitted Fourier Series (Preliminary Report). R. L. ANpErsoN, University
of North Carolina, Raleigh, North Carolina and T. W. AnpersoN, Columbia
University.

Given a set of N observations {X;}, which are defined as follows:

Xi—pi=pXi—L—-—pmi— L)+ &,
where the residuals {¢} are assumed to be normally and independently distributed with
zero means and equal variances and L is the lag. A statistic for testing the null hypoth-
esis: p = 0is LR, the circular serial correlation coefficient of residuals e; from a regression
line fitted by least squares: X; = M; + e; . The following regression line is considered :
2k

ki
Mi=a+ 3 a Cos o + 3" by Sin =,
. N T4 N

where k ranges over some subset of the integers 1, 2, --- , 3(¥ — 1) or }(N), depending
on whether N is odd or even (if N is even, b;y is not used). Hence . R is defined as:
er'ery1 + €€ + -+ + exeran
LR = et !

t

with e;.y = €; .

The distribution of this ;R has the same general form as that presented by R. L. Anderson
for p = 0 [“‘Distribution of the serial correlation coeflicient,’’ Annals of Math. Statistics
13:1-13(1942)]; and for p # 0 by W. G. Madow [‘‘Note on the distribution of the serial
correlation coefficient,”’ Annals of Math. Statistics 16:308-310(1945)].

T

N
For M; consisting of terms of only one period, 7= 2,3, 4, 6,12 and 24, exact values

of the 1% and 5% significance levels of ;R have been computed for N = 12 and 24. Ap-
proximate significance levels have been computed for N = 12(12)96. More of the exact
significance levels are being computed, and all computations will be extended to include
some multiple periods and some lags greater than 1.

2. Some New Methods for Distributions of Quadratic Forms. HaroLp
HoTtEeLLING, Institute of Statistics, University of North Carolina, Chapel Hill.

Any homogeneous quadratic form in normally distributed variates of zero means has
the same distribution as ¢ = %(a,zf + e+ a,.x:) , where the a; are roots of a determinantal
equation based on the coefficients of the given form and the parameters of the normal
distribution, and where the z; are normally and independently distributed with zero means
and unit variances. We take Za; = n,and begin by expanding the distribution of a positive
definite form in a series of powers of ¢ whose coefficients are polynomials in the reciprocals
of the a;. This series shows the analyticity of the function, which is then expressed as
the product of a X2distribution function of a series of Laguerre polynomials with coefficients
which are simple polynomialsin the moments of the a; . Indefinite forms and certain ratios
of forms are dealt with by convolutions of these series and by other means.
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3. Frequency Functions Defined by the Pearson Difference Equation. ILrko
Karz, Michigan State College, East Lansing, Michigan.

Frequency “‘links’’ formed from the Pearson difference equation provide an efficient
means of fitting functions to observed distributions. These links,involving three constants
which are determined by the first four moments of the observed series, correspond to a
three-parameter family of discrete frequency functions. This family of funections is just
as broad as that defined by the differential equation, containing functions of equally diverse
types; in addition, it has the very important advantage that the graduation process is the
same for any type. Further, the simpler functions of the family all correspond to points
lying in one plane of the parameter space. This plane, giving a two-parameter family
of functions (depending upon the first three moments), is studied intensively, rather com-
plete results being obtainable for areas, moments, sampling characteristics of moments,
etc. It is also shown that the problem of discrimination among simple discrete frequency
functions for graduating observed data is resolvable (in the plane) to the sampling distri-
bution of one statistic. A special case of the two-parameter family depending on only the
first two moments was previously discussed.

4. Distribution of the Sum of Roots of a Determinantal Equation under a
Certain Condition. 1. N. N.aixbpa, Institute of Statistics, University of North
C'arolina, Chapel Hill,

Letz = "{ z;; |land z* = {| x?‘,- /. be two p-variate sample matrices with n, and n, degrees
of freedom. Then S = zz"/niand 8* = z*x*'/n, are, under the null hypothesis, independ-
ent estimates of the same population covariance matrix. The distribution of a root, speci-
fied by its rank order, of the determinantal equation | 4 — 6(A + B) | = 0, where 4 = m,8
and B = n.S*%, has already been given by S. N. Roy, and by the author, who has also ob-
tained the limiting distribution of any root when one of the samples becomes infinitely
large. The moment generating function of the sum of the roots when n, = p &+ 1 can be
derived from the limiting distribution of the largest root. The probability distributions
of the sum of roots under this condition have been formulated for the determinantal equa-
tions having two, three, and four roots. The moments of these distributions -have also
been obtained. The method is applicable for the determinantal equation of any order.
These probability distributions can easily be tabulated, as they involve only simple al-
gebraic and incomplete beta functions.

5. Applications of Carnap’s Probability Theory to Statistical Inference.
GERHARD TINTNER, Iowa State College, Ames, Iowa.

The new theory of probability of Rudolf Carnap (‘‘On inductive logic,’’ Philosophy of
Science, vol. 12,1945, pp. 72 ff. ““The two concepts of probability,’’ Philosophy and Phe-
nomenological Research, vol. 5, 1944, pp. 513 ff.) introduces a distinction between probabil-
ity, , the degree of confirmation, and probability; , related to relative frequency. It is
believed, that the ideas developed are useful in clarifying the problems of statistical in-
ference. ,

As an example, consider the case of ‘‘inverse inference,’’ i.e. inference from a sample to
the population. The evidence is that in a sample of size s there are s, individuals with
a certain property M and s, = s — s, without the property. The hypothesis is thatin the
population consisting of n individuals there are n, individuals with property M and n, =
n — n; individuals without this property. The degree of confirmation is then:

(n; + wy — 1><nz + we — l>
= \St = 1/\82 4wy — 1

n+l;—2>
n—38
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In this formula we have: w; the logical width of the property 1/, w, the logical width of
the property non-M, k = w, + w. . It should be noted that for w; = w: = 1 the formula
becomes the classical result, i.e. a term of the hypergeometric distribution.

This idea may be applied to statistical estimation. We could for instance choose n;
in such a fashion that ¢* becomes a maximum. This would be estimation by the principle
of maximum degree of confirmation, analogous to maximum likelihood. Inasimilarfashion
we may also use c* to establish limits for n; similar to confidence or fiducial intervals.

6. Circular Probable Error of an Elliptical Gaussian Distribution. HarieTrT H.
GErMOND, S. W. Marshall & Co., Consulting Engineers, Washington, D. C.

Preliminary tables are presented, giving the radii of distribution-centered circular
cylinders enclosing various percentages of the volume under an elliptical bivariate Gaussian
surface. These tables are further interpreted in terms of a correlated bivariate Gaussian
distribution. The application of these tables to impact analysis is illustrated.

i

(Presented December 29, 1947 at the Chicago Meeting of the Institute;

1. The Asymptotic Analogue of the Theorem of Cramér and Rao. HEermaAN
Rusly, Institute for Advanced Study, Princeton, N. J.

The author generalizes the results of Cramér and Rao on the minimum variance of es-
timates to the case of the asymptotic distribution of an estimate. He shows that if certain
regularity conditions are satisfied, the formula given by Cramér and Rao remains valid.
The main results are obtained in the case of consistent estimates, but with a stronger set
of hypotheses, the results remain true for estimates which are not consistent. The method
used to obtain these results is to construct statistics to which the theorem of Cramér and
Rao can be applied, and whose variance converges to the variance of the limiting distribu-
tion. This procedure is also applied to the case in which there is no limiting distribution,
and in which two sequences of distributions are considered which act as if they approach
each other.



