NOTES

Thas section is devoted lo brief research and expository articles and other short stems.
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CONVERGENCE OF DISTRIBUTIONS
By HErBERT ROBBINS
University of North Carolina

Let fu(x) (n = 0, 1, 2, «++) be frequency functions

(1) @) >0, [: fu@) do = 1.

There are various ways in which the sequence of distributions corresponding to
the fu(z) (n = 1,2, - --) may be said to converge to the distribution correspond-
ing to fo(x). The definition customarily adopted in mathematical statistics
(see e.g. [1]) is equivalent to the condition

(a) 71‘1_10130 : falz) de = ‘[: So(z) dz for every &.!
We shall also consider the two further conditions

(b) 31_12 . falz) dx = L Jo(x) dx for every Borel set S,
and

(e) lim f falz) do = f folx) dx uniformly for all Borel sets S.
n—e0 Y8 8

1t is clear that (¢) implies (b) and that (b) implies (a). That the converse

implications do not hold is shown by the following examples.

ExampLe 1. Let fy(x) = 1for 0 < z < 1 and 0 elsewhere. Choose and fix
any 0 < e < 1,set 8, = ¢/n-2", and forn = 1,2, --- let fo(x) = 1/n-8, for
i/n—8 <z <Le/mn@ =12 ---,n) and 0 elsewhere. If we denote by S,
the set of all z for which f.(x) > 0 it is easy to see that forn = 1,2, - --

1 13
(2) 0 < f folx) do — f falz) dz < 1/n for every ¢,

3) folz) dx = €/2", folz) dz = 1.

Sn

1 From a well kown theorem of Pélya the convergence is then necessarily uniform for all £.
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Hence for the Borel set S = Y 8, it follows that
1
) [#@dr <3 [ 5@ iz =
S

) fsfﬂ(x) dr = fs fulz) dz = 1, (n=12--)

From (2) we see that (a) holds (uniformly for all £), and from (4) and (5) that
(b) fails about as badly as possible.

This construction can be modified to apply to any fo(x); thus choosing fo(x) =
(21re’2)“’/2 we can construct f,(x) (n = 1,2,---) and a Borel set S such that

& 1 ¢
lim falz) dz = \/—% f e dx uniformly for all £,

while
__!'._ —22/2 _ f _ _
\/2—1r~/;e dr = .01, sf,.(x) dx = 1, (n — 1, 2, _”).

It is conceivable that some time a statistician, failing to consider such a possibil-
ity, will be led to approximate .01 by 1.

If X, is a random variable with frequency function f.(z), if y = g(x) is a Borel
function, and if (a) holds, then it follows from Example 1 that the distribution
function H,(y) of Y, = ¢g(X,), equal to the integral of f.(x) over the set S, of all
z such that g(z) < y, need not converge to the distribution function H,(y) of
Y, = g(X,). It is easily seen that this possibility is excluded if, as commonly
occurs in applications, g(x) is such that for every y, the intersection of S, with
any finite interval is the sum of a finite number of intervals (e.g., if g(x) = sin z).

ExampLE 2. Let fo(z) be defined as in the previous example, and for n =
1,2, --- let fulx) = 1 4+ sin (2rnx) for 0 < z < 1 and O elsewhere. By the
Riemann-Lebesgue theorem it follows that (b) holds. But let S, denote the
set of all z for which f,(z) > 1; then

fs 0 de =3, [f@) de =4+ Un, (=12

so that (¢) does not hold.
It follows from these examples that (a), (b), and (c) are successively stronger
definitions of convergence. We shall now' give some definitions equivalent to

(b) and (c).
First we recall that the non-negative, completely additive, and absolutely con-
tinuous set functions

) P.(S) = f fula) dr, (=12
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are said to be uniformly absolutely continuous if for every ¢ > 0 there exists a
& > 0 such that for any Sandanyn = 1,2, .-,

7 m(S) < & implies P,(S) < e.

We shall denote the condition that the P,(S) be uniformly absolutely continuous
by (u.a.c.), and we shall now prove that (b) is equivalent to

(b") (a) and (u.a.c.).

Proor. (A) Suppose (b) holds. It is clear that (a) holds, and we shall show
by contradiction that (u.a.c.) holds also. For if not then there would exist an
€ > 0 such that for any 1 > 0 we could find a set S and an integer n such that

()] m(S) <n, PuS) > e

Moreover, since the set function
Po(S) = fs fol) da

is absolutely continuous, there exists a § > 0 such that
9) m(S) < 6 implies Po(S) < /2.

Now by (8) there exists an S; with m(S;) < 8/2 and a k; such that Px,(S;) > e.
Next, there exists an S, with m(S.) < §/2° and a k, such that Py,(Ss) > ¢, and
it is easy to see that we may assume that k; > k;. Proceeding in this way we
find a sequence of integers k; < k2 < --- and of sets S;, Sa, --- such that

(10) m(S,) < §/2", P, (Ss) > ¢ n=12: ).
Let S = D7 Sn ; then by (10), m(8) < Y.m(S.) < 8, so that by (9),

(11) Py(S) < ¢/2.

But by (10),

(12) P (8) > Pi,(8Sa) > ¢, (n =1, 2 --).

From (11) and (12) we conclude that (b) does not hold, which is a contradiction.
Hence (b) implies (b’).

(B) Suppose (b’) holds. We shall show first that (b) holds for any set S;
of finite measure. Choose any ¢ > 0; then from (u.a.c.) it follows that there
exists a § > 0 such that

(13) m(S) < & implies Pn(S) < ¢/8 n=0,1,2 ---).

It is known from the theory of measure that corresponding to S; and to 6 we can
find a set S, which is the sum of a finite number of disjoint intervals, such that

(14) m((S; — 82) + (S — Sy)) < 8.



CONVERGENCE OF DISTRIBUTIONS 75

From (13), (14), and the relations
(15) P,.(S1) = P.(Sy) + P.(S: — 82) — Pa(S: — Sy, n=012--:),
it follows that

| Po(S) — Pa(S1) | € | Po(S2) — Pa(S2) | + Pa(S1 — S2) + Pa(S2 — S1)

+ Po(S1 — S2) + Po(Se — S1) < | Po(S2) — Pau(S) | + ¢/2,
and from (a) that for large enough n,
(17 | Po(S2) — Pa(S2) | < /2.
Thus from (16) and (17) it follows that for large enough =,
]PO(SI) — P.(S) I <e

which proves (b) for the case m(S) < .
Now given any ¢ > 0 choose a, 8 so that, setting A = {a < 2 < 8}, we have

(16)

(19) Py(4) > 1 — ¢/4.
Then it follows from (a) that for large enough =,
(20) P.,(4) > 1 — ¢/2.

Then for any Borel set S we have for large enough n,
P.(S) — Py(S) = Pu(S4) + P.(S — A) — P(84) — P(S — 4),

| Pa(S) — Po(8) | < | Pa(8A) — Po(SA) | + Pa(S — A) + Po(S — A)
< | P.(SA) — Py(SA) | + ¢/2 + ¢/4.

But by the previous case, since m(SA) < e, for large enough n we shall have
| Pn(SA) — Po(SA) | < €/4. Hence for large enough n,

| Pa(S) — Po(8) | < ¢,

so that (b) holds in this case also. This completes the proof.
We shall say that lim f.(x) = fo(z) in measure if for every ¢ > 0 and for

every set A such that m(4) < oo, the measure of the set of all z in A for which
| fal@) — fo(x) | > ¢, tends to O as n increases. (For a space of finite measure
this reduces to the usual definition.) We now observe that (c) is equivalent to

(¢ lim fu(x) = fo(x)  in measure.

n—0

In fact, it is easy to show that (c) is equivalent to convergence in the mean of
order 1,

@) tim [ 17, = ia) | da = 0,
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which implies (¢’), and a theorem of Scheffé [2] states that (c) implies (c).?
Finally, it is not hard to show that the condition
(d) lim f.(x) = fo(x) almost everywhere
n —o0
implies (¢’) but not conversely.
Summing up, we arrive at the following complete set of implication relations
among the various modes of convergence which we have considered:

(200 . (d) = (") =2 () 2 () - B) =20 - (a).
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ON RANDOM VARIABLES WITH COMPARABLE PEAKEDNESS

By Z. W. BirNBAUM

University of Washington

The quality of a distribution usually referred to as its peakedness has often
been measured by the fourth moment of the distribution. It is known, however,
that there is no definite connection between the value of the fourth moment and
what one may intuitively consider as the amount of peakedness of a distribution.
In the present paper a definition of relative peakedness is proposed and it is shown
that this concept has properties which may make it practically applicable.

DerinitioN. Let Y and Z be real random variables and Yy and Z: real con-
stants. We shall say that Y is more peaked about Y, than 7 about Z, if the in-
equality

PQY -1|zT =P|Z—-7Z|2zT

s true for all T = 0.

If, for example, Y and Z are normal random variables with expectations Y
and Z, and standard deviations ¢, and o, , and if o, < o, , then Y is more peaked
about Y, than Z about Z,. Similarly; if ¥ is a random variable such that
P(Y <a) = P(Y >b) =0fora <b, and if Z is the discrete random variable
with P(Z = a) = P(Z = b) = 3, then Y is more peaked about 1(a + b) than
Z about the same point.

2Scheffé actually proves that (d) implies (¢), but the Lebesgue convergence theorem on
which his proof is based holds for convergence in measure (see e.g. [3]).

1 1. Kaplansky, ‘A common error concerning kurtosis,” Am. Stat. Assn. Jour., Vol. 40
(1945), p. 259.



