BRANCHING PROCESSES!

By T. E. Harris
Project RAND, Douglas Aircraft Company

1. Summary. This paper is concerned with a simple mathematical model
for a branching stochastic process. Using the language of family trees we may
illustrate the process as follows. The probability that a man has exactly r
sonsisp,,r =0,1,2, --- . KEach of his sons (who together make up the first
generation) has the same probabilities of having a given number of sons of his
own; the second generation have again the same probabilities, and so on. Let
zn be the number of individuals in the nth generation. We study the probability
distribution of z, . Some previous results are given in section 2; these include
procedures for computing moments of z,, and a criterion for when the family
has probability 1 of dying out. In sections 3 and 4 the case is considered where
the family has a non-zero chance of surviving indefinitely. In this case the
random variables z,/Ez, converge in probability to a random variable w with
cumulative distribution G(u). It is shown that G(u) is absolutely continuous
for u £ 0. Results of a Tauberian character are given for the behavior of G(u)
asu — 0 and v — ®. In section 5 some examples are given where G(u) can
be found explicitly ; G(u) is computed numerically for the case p; = 0.4, p. = 0.6.
In section 6 families with probability 1 of extinction are considered. A method
is given for obtaining in certain cases an expansion for the moment-generating
function of the number of generations before extinction occurs. In section 7
maximum likelihood estimates are obtained for the p, and for the expecta-
tion HEz, ; consistency in a certain sense is proved. In section 8 a brief discussion
is given of the relation between two types of mathematical models for branching
processes.

2. Introduction. By a branching stochastic process is meant a phenomenon
of the following general type: each of an initial aggregate of objects can give rise
to more objects of the same or different types, the objects produced can then
produce more, and the system develops, subject to certain probability laws.
Examples are the development of human or animal populations, propagation of
genes, and nuclear chain reactions. The mathematical model dealt with in this
paper may be thought of as representing the generation-by-generation growth
of a family, the fundamental random variable being the number of individuals
in the nth generation. Under certain conditions, however, this model may
describe the size of a family at a sequence of points in time. This question will
be touched on in section 8.
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DerinitioN 2.1. The random variables z. ,n = 0, 1, 2, - - - , will be said to
represent a simple discrete branching process provided: zp = 1; P(ey = r) = p,,

r=20,1,2 ---, with ) p- = 1; the conditional distribution of 2.1, given
r=0

2, = r, is that of the sum of r independent random variables, each having the
same distribution as z.
Assumptions. Throughout this paper we assume that 2 r’p, < o, that at

=0
least two of the p, are positive, and that p, + p1 < 1.
DeriniTioNs 2.2. Let 2 = Ezy = Zrp,, o = Var () = 2r'p, — 2°. Let

f(s) = 2_ p,s" be the generating function of 2 (s denotes a complex variable).
=0

Let po, = P(2z, = r) and fa(s) = Eo Pnr8’; Of course pi» = prand fo(s) = s. The

assumptions given above insure that the first and second derivatives f’(s) and
f"'(s) are continuous in the set consisting of the interior of the unit circle and the
point s = 1; thus derivative notations such as f”/(1) are used even though f(s)
may not be analytic at s = 1. It will be seen shortly that a similar remark
applies to the functions f,.(s) and certain functions to be introduced later.

In the remainder of this section we shall summarize certain results; most of
them are contained implicitly or explicitly in works by Fisher {1], Lotka [2],
Steffensen [3], Ulam and Hawkins [4], Kolmogoroff [5], Kolmogoroff and Dmitriev
[6], and Yaglom [7]; some of these references are not widely available.

From our definition, P(2,41 = k|2, = j) is the coefficient of s* in [f(s)].

Hence pn1. is the coefficient of s* in > Dailf(s), whence
=0

(2.1) fu+1(s) = fn[f(s>]°

Letting n = 1, 2, - - -, successively, it follows that the generating function of z,
is the nth functional iterate of f(s). Hence

(2.2) fata(s) = flfa(s)].

We note that fo(1) = Ez,, fu(l) +fa(1) — [fa(1)) = Var(z,). Differentiation
of (2.1) at s = 1 gives foya(1) = z"*; another differentiation gives f,41(1) =
F"OF P + F/(1)f »(1) while twofold differentiation of (2.2) gives frn4i(1) =
/(D (1) 4+ [77(1)Ff » (1) ; these two expressions for f'41(1) can be equated and
solved for f7 (1), provided = = f'(1) # 1. 2Thus the mean and variance of z, are
(i(?x - ,z # 1; Var (2,) = nd,
-z
z = 1. Higher moments, if they exist, may be found by a similar process.
DEeFintTION 2.3. Denote by a the smallest non-negative real root of the
equation t = f(t). We see that x < 1 implies ¢ = 1 while £ > 1 implies
0 < a < 1, the equality ¢ = 0 holding if and only if p, = 0. In no case can the
half-open interval 0 < ¢ < 1 contain more than one root. It is readily seen that
(2.3) lim p, = lim £,(0) = a.

n - 0

given by Ez, = (Ez)" = z"; Var (2,) =
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We thus have the well known result: the number a is the probability of eventual
extinction of the family. The relation between a and z shows that the probability
of extinction is 1 if and only if x < 1.

It is also clear that 0 < ¢t < 1 implies lim f,(t) = a; this, together with (2.3),
shows that
(2.4) limp, =0,r=1,2,---.
Relation (2.4) means roughly that the family either dies out or gets very large.
In section 4 it will be shown that (2.4) holds uniformly in .

DerintTioN 2.4. The random variables w, are defined by w, = 2,/z".

Clearly Ew, = 1and Ew’ =1 + 526_2 x(l ~ 9%,) if x # 1.

Suppose n > m. Then E(z,2,) = Zp,;,,E(rz,. l2m = 1) = D Ppmrz” " =
" "Bz, . Thus E(waw,) = Ew’, wh;nce '
(2.5) E(w, — wn)’ = Ewl, — Euwl,, n > m.

By virtue of (2.5) we obtain
TreEoREM 2.1. If 2 > 1, the random variables w, converge in mean square,

hence in probability, to a random variable w.
2

For in this case Ew: — 1 + as n — o and (2.5) shows that

2
@ -z
E(w, — wn)’ —0asnand m — . Theorem 2.1 is then a consequence of [8],
p- 38, L.
It is well known that convergence in mean square implies Ew} — Ew® and
E(w, — 1) — E(w — 1)’ whence Ew, — Ew.
Thus we have

(2.6) Ew=1 Ew=1+4 " .

In order to study the behavior of z, for large n when x > 1, we consider the
distributiop of w.

w0

DeriNtrions 2.5, Gu(u) = Plw, < w); 9u(s) = H(e™) = [ ¢ dG,w).
o_
DerintrIOoNs 2.6. (Applicable when ¢ > 1.) Gu) = Plw < w); ¢(s)=
E(E”) = f ¢ dG(u). We shall refer to G(u) as the asymplolic distribution
o_

branching from f(s).

The moment-generating functions (m.g.f.’s) ¢.(s) and ¢(s) are defined at least
for Re (s) < 0. TUnless specifically stated otherwise we shall consider them only
in that domain.

From (2.2) and the fact that ¢,(s) = f.[e"”*"] it follows that ¢nr1(sz) = fl¢a(s)]
Theorem 2.1 implies that if x > 1 G,(u) — G(u) and ¢,(s) — ¢(s) for Re (s) < 0
Thus the m.g.f. $(s) satisfies the functional equation

2.7 o(sz) = fl$(s)], Re(s) <0.



BRANCHING PROCESSES 477

Equation (2.7), which of course is applicable only when > 1, was obtained in a
different form by Ulam and Hawkins. It belongs to a type usually known as
Koenigs’ equation, after the nineteenth century mathematician who studied it
in connection with functional iteration, and is related to an equation studied by
Abel. 'We shall make some use of the work of Koenigs later. See Hadamard [9]
and Koenigs [10].

We note that Ew® < o« if and only if Ezf < «. It was already pointed out
that Ew = 1. As pointed out in [4], as many further moments of w as exist
may be found by successive differentiation of (2.7) at s = 0.

Finally we note that G»(0) = p.. Hence lim G.(0) = a. Thus G(0) =
P(w = 0) > a. We show later that G(0) = a. Clearly G(u) = 0 for u < 0.

In sections 3 and 4 we always assume x > 1.

3. Asymptotic properties of the moment-generating function. We first
show that (2.7) uniquely determines the distribution of w. Specifically,

TrHEOREM 3.1. Let Gi(u) and Go(u) be distributions with equal first moments
and finite second moments whose characteristic functions ¢,(it) and ¢:(it) satisfy
(t is real) ¢,(itx) = flp.(@t)],r = 1,2. Then Gi(u) = Ge(u).

From [13], p. 27, é:(it) — ¢.(it) = £8(t), where B(t) is bounded as ¢ — 0.
From (27), | i) — i) | = | @) — S]] < 2186 = i) |,
since | f/(s) | <  when | s| < 1. Hence for ¢ 0,‘[3 > ‘ >z |B(t)|- Thus
B(¢) cannot be bounded near ¢ = 0 unless it is identically zero; hence

Bi(it) = Ba(i0).

It is clear that the requirement that ¢(s) have the form 1 + s + 0(s®) between
two rays from the origin is sufficient for the uniqueness in that domain of solu-
tions of (2.7). On the other hand, continuous solutions can be constructed at
will if the existence of a derivative near s = 0 is not required.

Before proceeding further, it is convenient to define three functions %(s),
¥(s), and H(u) which are closely related to f(s), ¢(s), and G(u) respectively. We
repeat that we are considering only the case > 1. See definition 2.3 for a.

DEerinrrions 3.1, Let k(s) = fls( ’"1“_)_‘2 a—a
bility generating function with k(0) = 0, ¥’(1) = f'(1) = =z, k¥”"(1) < ». We

write k(s) = Y g,sr. We also define the iterates k.(s) by

r=1

Clearly k(s) is a proba-

ko(s) = s, knp1(s) = klka(s)].

Derinrrions 3.2.  Let H (u) be the asymptotic distribution branching from k(s)
(See Definition 2.6.) Let y¥(s) be the corresponding moment-generating func-
tion. We know then that ¢(s) and k(s) satisfy

3.1) W(sz) = Hy(s)]
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In view of the uniqueness theorem we have, by direct substitution in (3.1), that
¥(s) must be given by

(3.2) We) = B 2= T8,

and that H(u) must be given by

()
(33) H(@) = — 1_1::95_ w>0; H@w =0, u<O0.
We shall see later that H(0) = 0; i.e., that G(0) = a. Therefore H(u) is the
conditional distribution of (1 — a)w, given that w = 0. Another way of stating

this is as follows:
TraeoreM 3.2. The random variable w is distribuled as the product of two inde-

, 1
pendent random variables wo-w’, where wo takes the values 0 and - a with prob-

abilities a and 1 — a respectively while w' has the asymptotic distribution branching
from k(s).

For it is directly verifiable that ¥/(s) is the m.g.f. of wo-w’.

In theorems 3.3 and 3.4 we consider the behavior of ¥(s) for large | s|. To
make for smoother reading we defer the proofs till section 9, where somewhat
more general formulations are given. In section 4 the properties of ¢(s) are
interpreted in terms of G(u).

DerintTioN 3.3. Lety = log, (l) = log, [-—,}- ] . (See definitions 2.3 and
o f'(a)

3.1) Ifq =0(.e,po=p =0)wetakey = .
TuroreMm 3.3. Supposey < ©. Thenif Re (s) < 0ands = 0,

(3.4) oo) = 8 ).
M (s) is continuous for s #= 0; M (s) and M(s) satisfy respectively
69 M) = M6 M =0( 1), sl

Remarks. (See section 9for proof.) (a). Under the conditions of the theorem
M (s) is real and positive when s is real and negative. (b) If Ez; < « and the
conditions of the theorem hold, the rth derivative of ¥(s) satisfies

(3.6) [¥7(s)| = O (i—,s—llq;) Js]— o.

(c) If y = o, ¢(s) and as many derivatives as exist approach 0 exponentially
as |s| — .

We now consider the behavior of ¥(s) on the positive real axis, provided it is
defined there.
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LemMma 3.1.  Let f(s) be analytic in the circle | s| < e, @ > 1. Then ¢(s) and
Y (s) are analytic in some neighborhood of s = 0.

We use a theorem of Poincaré [11] which insures that there is exactly one
function ¢(s) analytic near s = 0 with $(0) = ¢'(0) = 1 and satisfying

é(sz) = flo(s)].

(Although Poincaré’s proof is for the case f(s) rational, it applies equally well
here.) The circle of convergence of the MacLaurin series for ¢(s) has radius ¢.
where ¢(t.) = «. An argument whose details are given in [12], p. 21, then
shows that ¢(s) = &(s) for | s| < ta, and Lemma 3.1 follows. (The argument
is necessary to rule out the possibility that the ¢.(s) converge to ¢(s) for
Re (s) < 0 but to some other function for Re (s) > 0.) Clearly ¢(s) and ¥(s)
are entire if and only if f(s) is entire.

Lemma 3.1 is useful for actual computation of G(x). The (non-negative)
coefficients ¢, in the series ¢(s) = 1 + s + &s* + --- can be determined by
differentiating (2.7) at s = 0. The series can be used to compute values of the
characteristic function ¢(¢t) on some interval t{, < ¢t < {z, where ¢ is a small real
number; the values of ¢(:t) for the remaining values of ¢ are determined by (2.7).
(Note that the real and imaginary parts of ¢(it) are respectively even and odd.)
Then the usual inversion formula is used to obtain G(w). A numerical example
of this procedure is worked out in section 5.

DerinrrioN 3.4. The number p is defined by p = log.d if f(s) is a polynomial
of degree d, p = « otherwise.

TaeorEM 3.4. Let f(s) (and hence k(s)) be a polynomial of degree d. Then
fors >0

E’%’Q = L(s) + Lo(s);

L(s) is continuous and posttive; L(s) and Lo(s) satisfy respectively

Lsz) = I(s);  Lo(s) = O <l> s — .

SP

The proof is in section 9. (Theorem 3.4 may be compared with a more widely
applicable but less precise result due to Shah [19].)

CoroLLARY. If f(s) is a polynomial of degree d, ¥(s) is an entire function of
order p and type C where C = Max L(s), 1 < s < z.

An explicit determination for C has not been found. An approximate numeri-
cal determination is not difficult; the function L(s) = lim l—gg—g’fg’;—@)—] can be
determined numerically for a number of values on some convenient interval
so < s < sz, and the maximum value approximated. The importance of C
will be indicated in the conjecture following Theorem 4.3. We may also men-
tion that the quantity [Max L(s) — Min L(s)], 1 < s < x, is of some interest.
Some numerical work indicates that in certain cases L(s) is at least approxi-
mately constant.
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4. Some properties of G(x). Since it will be convenient to work with H(u)
rather than G(u), we state the content of Theorems 4.1, 4.2, and 4.3 in terms

of Glu): Gluw) = a + ] g(®) dv for uw > 0. The density g(u) is continuous for
0

u# 0. If EZf < « then g™ (u) is continuous for u > 0 providedr <y + £k — 1
and is continuous for « = 0 provided r < ¥ — 1. Near u = 0, G(u), provided
v < o, approximates, in a certain mean sense made clear by Theorem 4.2, the
(1 _ a) v+1
r{+ )
M (u) for positive u by M (u) = M(—u). Itisthen shown thatin a certain sense
g(u) goes to zero faster than exp (—u°") and slower than exp (—%°"*) where ¢ is
any positive number, @ being defined in Theorem 4.3. A conjecture is given of a
more precise result, applicable when f(s) is a polynomial: in the same sense g(u)
goes to zero (more, less) rapidly than (exp [— (4* — €)u®], exp [—(4* + &)u°)),
where A* is defined in the conjecture.

Derinrrion 4.1, Let H'(u) = h(u).

TueoREM 4.1. H(u) is absolutely continuous. Theorem 3.3 shows that H(u)
is continuous; see [13], p. 25. This incidentally shows that G(0) = a. If
v > % the absolute continuity of H(u) follows from the Plancherel theorem.
See any text on Fourier transforms. In any case, define the functions

function a + u"M|u(l — a)], where for convenience we have defined

M) = o [ ey, mo= 1,2,
27" —m
An integration by parts’ gives for u # 0

. "'1 o —imu _ s tmu 1 " —itu d'#(it)
(4.1) hn(u) = e [y(em)e Y(—im)e™] + g L€ o dt.
0o <wy<u<wu, 4l1), (3.4), and (3.6) show that the continuous functions
hn(u) converge uniformly in [u; , uz] to a continuous function hA(u). Moreover

. m (e—itu2 — e—-itul) .
Hiw) — Hw) =tim [ =2 Dyyar

m—ro0 V—m — 2t

(4.2) - v
= lim hm(u) du = f h(u) du,

m—o0 4 uy uy
the first equality in (4.2) following from [13], p. 28 and the second from the fact
that the h.(u) are uniformly bounded for u; < u < uz. In case Ef < «
and » < v + k — 1, repeated integration by parts of (4.1) and reference to
remark (b), Theorem (3.3), shows that the first » derivatives of h(u) are con-
tinuous if u ¢ 0. The usual integral expression for A(u) in terms of ¥(it) shows
thaty > 7 + 1 implies A (w) is continuous at 0.

2 I am indebted to J. W. Tukey for this suggestion, which simplifies the original proof.
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COROLLARY TO THE CONTINUITY OF H(u): the numbers p,., = P(z, = r) —0
untformly inr,r > 1,asn— . We have

pe=[0.(%) o (5)]+ [0 (%)
~6(G @)+ e R) e ()]

The desired result follows because G.(u) — G(u) uniformly for « > 0 and because
G(u) must be uniformly continuous for 0 < w < « (right-continuity at 0).

We next consider the behavior of H(u) near v = 0, wheny < «. Theorem
3.3 suggests what sort of result may be expected. If the function M(s) of
Theorem 3.3 were a constant M it would follow from a Tauberian theorem due

MuY
to Karamata (see [14], pp. 189-192) that H(u) ~ I‘(;—r-l)

as u — 0+, or

H(u) M . . . .
e uI‘——(y T Integrating both sides of this relation from u to uz would
give
“* H(v) dv 1 f’ M dv
“3) o i TTGE DL e

The analogue of (4.3) turns out to be true, as shown by Theorem 4.2, which

M
shows that in a certain mean sense, H(u) behaves like I‘IZ _*Eu)l) as u — 04.
(We defined M (u) = M(—wu) for u > 0.)
THEOREM 4.2.
e H(v) dv JlI(v) dv

tin [, "o =i )
The proof, which follows directly along the lines of the proof of Karamata’s
theorem, is sketched briefly in section 9, for a somewhat more general situation.
A corollary of Theorem 4.2 is that if v < 1, A(u) cannot be bounded as u — 04
for h(u) < K implies
lim “ K- vdv f M(v)
u—mtp Ju Y (v + 1)
which impliesy > 1. An example to be given in section 5 shows that if y = 1,
h(u) is at least in certain cases bounded but discontinuous at 0.
In order to consider the behavior of H(u) as u — « we first prove a theorem
which applies to any distribution whose m.g.f. is an entire function.
TureoreEM 4.3.2 Let F(u) be any c.d.f. whose m.g.f. £(s) is entire. Let pbethe
order of £(s). Let Q be defined by

Q = lLu.b. q:[ el“lq dF(u) < .

dv >0, or lim %' >0,

u-—0+4

3 Before completing the present proof, the writer communicated this result to R. P.Boas,
Jr., who sent back a proof along different lines.
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1 1
Then- 4+ = = 1.
P Q
The proof is given in section 9.
Combining Theorems 3.4 and 4.3, we obtain immediately
p

TueoreMm 4.4. Let Q = lu.b. q:f e€“h(u)du < . Then Q = -
(] p—

Here p is given by definition 3.4. If f(s) is not a polynomial, whether entire
or not, the proof of theorem 4.3 will show that @ = 1, and we interpret theorem
4.4 in that sense. The trivial case f(s) = s* is excluded, so p > 1.

CoNJECTURE. Let £(s) of theorem 4.3 be of finite order p and of type C,

0<C< w. LetQ = and let A = lub. A’: f ™ dF(u) < .

p — 1 —o0
Then (Cp)®-(4Q)* = 1.

The proof for the case p rational follows the same lines as the proof of Theorem
4.3; a general proof has not been found. If the conjecture is true then having
determined p and @, when %(s) is a polynomial, and having estimated C by the
procedure indicated following the corollary to theorem 3.4, we obtain

1 (1 Yo
(44) 4= Q (Cp)

for the L.u.b. of the numbers A’ such that f e*“h(w) du < . The cor-
0

responding number 4 * which applies to g(u) is given by
(4.5) A* = A(1 — o)

b. Some special cases. In this section we shall discuss some special cases in
which the m.g.f. ¢(s) and the c.d.f. G(u) may be determined explicitly. For
these cases and for certain others there is a close relationship between the simple
discrete branching process and another type of model to be discussed in section 8.
Finally a numerical computation of the distribution G(u) will be given for a
particular case where f(s) is a second degree polynomial.

Suppose f(s) has the form

T, 1
f(8)=1‘;+;<f1a—fas)

withz > 1,a > & — 1, where f/(1) = zand f/(1) + f'(1) = Ez{ = z(1 + 2a).
It is easily verified (as pointed out by Poincaré in [11]), that the solution of the

-1
equation ¢(sz) = flo(s)]is given by ¢(s) = 1 + a;(ja_;vl‘—_—)f;g with ¢(0) = ¢’(0) = 1.
The number a satisfying @ = f(a) is given by ¢ = O:—Ilclrj . The functions

. . 1 8
¥(s) and k(s) of section 4 are given by ¢(s) = T k(s) = = (= Ds°
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The number vy of Theorem 3.3 is 1. The density function h(u) (definition 4.1)

is simply ¢*, as seen by direct calculation. The number Q of Theorem 4.3 is 1,

as it should be, since f(s) is not an entire function. The c.d.f. H(u)is 1 — ¢7*,

and H(u) ~ u near v = 0, in agreement with Theorem 4.2. Various aspects
s

of the case f(s) = Cs + D have been discussed by numerous authors.

Somewhat more generally, we may consider generating functions of the form
(5.1.) k(s) = sfx — (x — 1)s™7™, x> 1.

The function k(s) is a generating function if and only if m is a non-negative
integer. In this case we have ¢(s) = ¢(s) = (1 — ms) ™™ and g(u) = h(w) =

1
1\ @M=l I™ - Here 4 = 1 , and we note that unless m = 1 the
(mllm)l-‘ (_) m

density function A(u) is unbounded near v = 0. A physical interpretation for
this case will be given in section 8.

As a numerical illustration we consider the case f(s) = 0.4s + 0.6s*. We
havez = Bz = 1.6 and o® = E(z — z)* = 0.24. For the asymptotic distribu-

2
tion, Bw = 1, B(w — 1)* = = 0.25. The number ¥ = log s (()%) =

1

1.9495 so that y¥(s) which is identical with ¢(s) in this case, is O(f;lﬂm> as

| s | goes to « with Re (s) < 0. This implies that the c.d.f. H(u) and likewise
G(u), since the two are equal here, behaves like [1/T'(1 4 v)]M (u) times ut
near u = 0, where the “behavior” is in the sense of Theorem 4.2. Numerical
determination of M (u) would not be difficult. The number p of Theorem 4.4
is given by log, 2 = 1.4748. This means that ¢(s) is an entire function of order
1.4748 and hence that the density function k(u) goes to zero more rapidly than

* and less rapidly than ¢ %" for any e > 0, where Q = ;f_l = 3.1061,

2
r —Z

e

and “more rapidly” is used in the sense of Theorem 4.4.

The function L(s) = lim l_gg&%(.zx_)
s = 1and s = z = 1.6; in each case the value was 0.744625 so that it appears
likely that here L(s) is constant. Hence C = Max L(s) = 0.744625 and the
quantity 4 defined by (4.4) is 0.26430. Thus the conjecture following theorem

4.4 indicates that f g(u
0

ing as the + or — sign holds.

Through the kindness of Mr. Cecil Hastings of the Douglas Aircraft Company,
the c.d.f. G(u) was computed for this case. The coefficients in the power series
expansion of ¢(s) were obtained from the functional equation (3.1) and G(w)
was then obtained by inverting ¢(it). The values of G(u) are given in Table I.

was computed for four values of s between

744625, 3.1061 . .
Y0 THEBE Y du is (divergent, convergent) accord-
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6. Number of generations to extinction. It was pointed out in section 2 that
when z < 1 the probability is 1 that 2z, = 0 for some integer n. We assume
through-out section 6 that x < 1.

TABLE 1
G(w), the limiting probability that z,/x" < wu for the case f(s) = 0.4s + 0.6s’

G(u)
.00000
.04753
17275
.34550
.53117
.69932
.83042
.91857
.96781
.99751
.99993

&

el
NN NN TN QO

WNN === =~0000C
8@@0100100100!0

DEerinrTIONs 6.1. Let the random variable N be the smallest integer n such
that 2,41 = 0. Define the moment-generating function of N by

6(s) = 2 e"P(N = n).
n=0

Clearly P(N = ) = Pas1.0 — P, 80 that 6(s) = Z_:Oe"‘(p,,+l,. — Pno).

DrriniTIONS 6.2. Let b, = 1 — ppya,0, with by = 1 — pp. The numbers b,
satisfy the recursive relation
(6.1) by = 1 — f(1 — b,).
Define the function 6:(s) by

01(8) = Z bnens-

n=0

We see that
(6.2) 6(s) = 1 4 (ef — 1)6u(s),

so that it suffices to determine the function 6,(s).

The function 6;(s) belongs to a type which has been studied by Fatou [15]
and Lattes [16].  If we let e* = z we see that 6:(z) is a power series whose coeffi-
cients are successive iterates of the function f*(b) = 1 — f(1 — b); i.e., bpy1 =
F*(b,) = fria(be), where f*(0) = 0, f¥/(0) = « < 1. It was shown by Fatou
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that a function of this sort is meromorphic with poles at s = —n-log 2z, n =
1,2, --- . An expansion for 6,(s) in the form
fi(s) = - HY_ _m¥ b 4o

1 — ac 1 — 2% 1 — ade*

was obtained by Lattds, the expansion converging everywhere except at the
poles. The quantities u, and y, are defined as follows: the function u(s) =
w8 + wes® + wys® + - - - is determined by the functional equation u(sz) = f*[u(s)]
with the condition %’(1) = w; = 1. The number ¥y, is determined by u(y,) =
bo = 1 — po. Perhaps the easiest way to determine ¥, is to use the fact that
the inverse function u '(s) satisfies the functional equation u'[f*(s)] = zu™(s),
from which we can determine the power series for u " (bo).

Since the use of Lattes’ expansion requires finding the expansions of x(s) and
x (), we now give another method, giving a different kind of expansion; this
method appears particularly adapted to the case here illustrated, where f(s)
is of the second degree. Then (6.1) becomes

(6.3) bogr = by — pobh, bo=1—pp.
DerinirioN 6.3. The functions 6x(s), ¥ = 1,2, - - -, are given by
(6.4) 0u(s) = 20 (ba)'e™.

If we raise both sides of (6.3) to the kth power, multiply both sides by ¢™, sum
on n from 0 to «, and solve for 6;(s), we obtain

k
_ k _
bie™ + > (= p2) 2" 0kr(s).
6.5) 0s) — = <’> .

et — 1”“

(Justification for the rearrangement of series will come out of the subsequent
proof.) If we putk = 1in (6.5) we obtain

6:(s) = boe  — P2Buls) e_,-_pifZ(s)'

(6.6)

DeriniTions 6.4.  'We define recursively sequences of functions S,(s) and R,(s),
such that for each n, 6,(s) = S.(s) + R.(s). Let

l)o 6—8

Si(s) = prar Ri(s) = —

—s __

P260(s).
e — X

Suppose now that R,(s) is of the form A.i0,11(s) 4+ -+ + Annben(s), the A,;
being functions of s, p» , and x, but not explicitly of b, ; while S.(s) is a rational
function of ¢, p., and z, and a polynomial of degree n in b,. Now put
: = n 4+ 1in (6.5) and substitute the expression obtained for 8,.1(s) into R,(s).
Collecting terms we now define R,:(s) as the sum of terms involving 6,42(s), - - - ,
Oons2(8): Rnza(s) = Ani1a0nia(s) + -+ + Anpint102012(s); then S,pa(s) =
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0:1(s) — Rn41(s) is a rational function of e, p,, and z, and a polynomial of
degree n + 1in by .
THEOREM 6.1. Let f(s) = po + pis + pos’, with x < 1. Suppose that
x + pobo < 1. Then the junctions S,(s) converge to 6,(s) in a neighborhood of s = 0.
The restriction  + p.by < 1 may fail to hold. However this is not a serious
restriction; we pick a value of n so that z 4 pb, < 1. Then

Bu(s) = bo + -+ + base™ ™" + ™67 (s),
where 67 (s) = 2 b;e""™" is the same type of function as 6i(s); theorem 6.1
j=n
is then applicable to 67 (s).
If the conditions of theorem 6.1 are satisfied, we have
0:1(s) = boe °*[m(s, ) — P2bom(s, ) + 2xp3byms(s, ) °

(6.7)
— pib3(e™ + 52°)mi(s, 2) + -]

where mi(s, z) = iIx (e-" 1_ x') . Since E(N) = ¢(0) = 6,(0) and E(N*) =
0" (0) = 26,(0) + 6:(0), we have
E(N) = boim{0, ) — pabo m(0, x) + 22p3bs m5(0, )
— p3bi (1 + 52°)m(0, 2) + - - -],
E(N*) = —E(N) + 2bo[1(0, ) — pzboms(0, z)
+ 2xpiboms(0, x) — (52° + 1)pibyms(0, 2)

+ pibima(0,2) + -+ -]

k
where 7;(0,z) = (0, z) D iﬁrl;:c"'
r=1 —

We now prove that if £ + psby < 1, the expansion (6.7) is valid in some neigh-
borhood of s = 0. We shall denote the particular values of z, p. , and by with
which we are dealing by Z, Pz, and by. Now let z, p. , and by be three complex
numbers, arbitrary except for the following restrictions:

(6.8) lz|+ |p:| <1, [bo] <1

and define the numbers b, in terms of b, , x, and p., by means of (6.3), with

0:(s) defined by (6.4).
We first show that (6.7) is valid if (6.8) holds, and then show that the domain
of validity also includes the original numbers Z, P. , and b, , provided

z+ i)zl_?o <1
If (6.8) is satisfied, we have [ b, | < A |z |" where 4 is a positive constant.

Now suppose 1 < T < glc Then the series defining 6;(s), & = 1, 2, --- , are
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uniformly and absolutely convergent in the domain |e*| < T. Moreover, if
|| + |p2] = A < 1, we have | b, | < bA" whence, if k is an integer large
enough so that TA* < %,

(6.9) [8x(s) | < 2b5

for |e¢| < T. In what follows, we assume |e*| < T. Now write 6;(s) =
S.(s) + zn:A,.j(pz , &, 8)0n+;(s), where n is large enough so that TA" < 3.
Let A,,(p::g,lx, s) = 11;/535§ | Anj(pe, x, s) | . Passing to the next stage we see

| Al i1 AnH
that 4,41 < 4, + o A" < 4.1+ ey B Hence the numbers

A, are bounded. This fact, together with (6.9), shows that lim R.(s) = 0.

Now suppose that z and b, have their original values & and b, while p; is small
enough in absolute value so that £ + | p, | < 1. In this case lim S.(s) = 6:(s).

We observe that S,(s) is a polynomial of degree n — 1 in p, and that S,4.(s) is
obtained from S.(s) by adding a single term of degree n in p.. Thus 6:(s) has
been expressed as a power series in p. . Now consider 6,(s) as a function of p ,
withby = by, 2 =2 IfZ + by|p:| < 1, we have b, = O[(%)"]. Thus 6,(s)
1 -z
is analytic in p; for | p:| < __B_x and the expansion in (6.7), being a power
0

series in p; , must be valid when & + by < 1.

7. Estimation of parameters. Until now we have assumed that the param-
eters p, are known numbers. We may wish, however, to estimate them, having
observed the numbers 2;, 22, -+ , 2,41 . In order to get simple maximum like-
lihood estimates for the p,, it appears necessary to introduce certain auxiliary
random variables.

Derinrrions 7.1.  Let 2. be the number of individuals in the mth generation
who have exactly L descendents in the (m + 1)st generation. Let Z, =
Il+24+ -+ 2.

THEOREM 7.1. Maximum likelthood estimates of p, and x, based on observed values
of 2mk for m < n, are respectively,

n

by = Z Zmr/ Zn s & =Zppn — 1)/Z,.

m=0

(Note that the estimate & involves only 21, * -, 2a41.)
If z,, is fixed the joint conditional probability function of 2mo, Zm, * -, is

[(z,,.)! 11 pi""] II Gzm)!. Thus the joint probability function of the 2, for
r=0 r=0
m=0,1,---,n,andr =0, 1,2, ---, is given by the product of Ezvo factors,

one of whichisindependent of the p, , the logarithm of the other being > > Zmr) *

=0 m=0
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log p.. The value of this expression is clearly maximized by taking p, = P,
as given above. Since sz, = 2mand D T2m = Zmi1 , the quantity 2_rp, gives

£ as above.
Although the estimates p, are the same as we would obtain if we were dealing
with Z, trials from a multinomial distribution with probabilities p, , the joint

distribution of the quantities ) zm,, r = 0, 1, - - -, is not multinomial. For
m=0

example, i° Z, > 1 the probability of the event

{szo = Zn, szr —Oforr?fO} is 0.
m=0

We shall next show that the estimate £ is, In a certain sense, consistent.
Tueorem 7.2. If x > 1, the random variables Z,11/Z, converge in probability

to the random variable xV* where V* = iif w=0and V* = 1ifw 0.

If w # 0 then for all n, 2z, 3 0 and 1/Z, —» 0asn — «. Hence in this case
(Zny1 — 1)/Z, converges to x if Z,.1/Z, does. On the other hand, P(w = 0)
= a = P(z, = 0) for some n, so thatif w = 0, Z,,1/Z, = 1 with probability 1 for
n large enough. Thus we need only show that Z,,1/Z, converges to z if x > 1
and w = 0.

We need the following:

Lemma 7.1. If x > 1, the random variables Z,/x" converge in probability to

wx
z—1
Since

(7.1) we _Z, _ w (

r—1 z» il

E)+ Lo

2
it will be sufficient to show that lim (f) —mre E@’) = 0 and lim

T —» 0 ]- n —s00

2
(Z (w = r > = 0. The truth of the first statement is obvious, since Ew’
=0

is finite. It follows from (2.5) that E(waw,) = Ew:if s > r, E(ww,) = lim

”n—>0
2

E(w.w,) = Ew’, whence E(w — w,)’ = m and E[(w — w.)(w — w,)] =
Z;gm if s > r. Then
n  s—1
B(Le ) - Lo [Se e B
r=0 X x X s=1 r=0

and this quantity clearly approaches 0 as n — o, proving Lemma 7.1.



BRANCHING PROCESSES 489

Define the random variables w* and V, as
w* = w when w # 0

w* =1 when w =0

Va =% when 2z, # 0

Vo= when 2z, = 0.

rz—1

It is clear that the V, converge in probability to w* z i 1 and we note that the

c.d.f. of w* is continuous at w* = 0. Hence,

|
lim P<|K"i‘ - 1‘ > € >0> = lm P(Vapp — Va = Vae S 0)

| Va nse0
+w* ze
—P(:v—- T §0)—0.

N —> 0

It follows, under the conditional hypothesis w # 0, that the variates Z;“ con-

verge in probability to z, since

Zn Va -
__Z:r’ =2 V:l when 2,41 # 0.

8. Continuous models. As mentioned in section 1 there are situations where
it is more important to consider the number of individuals existing at a given
time than the number in a given generation. Let a set of probabilities p, be
given. The question arises whether we can interpret these as probabilities that
an individual will have a given number of descendents at the end of some fixed
period of time. We might then suppose that each individual in existence at
that time has the same probabilities of having a given number of descendents at
the end of the next (equal) length of time, these probabilities being independent
of the age of the individual. A model of this sort might be considered in certain
fission processes, if the probability of fission is independent of age. It should
be noted that the “descendents” of an individual may include the individual.
For example, if a bacterium splits in two we may either regard it as having pro-
duced two descendents and dying, or as having produced one descendent and
itself surviving.

If an interpretation of this sort is to be satisfactory, interpolation in time must
be possible. In other words there should exist a family of functions f.(s) defined
for all positive n such that fa,[f2,(8)] = fai+n(8); sgch that for each positive n,

fx(s) is a probability generating function, f.(s) = > p.(n)s’; and such that for
r=0
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n = 0,1,2, --- the functions f.(s) coincide with the iterates s, f(s), fIf(s)],

We may then interpret f.(s) as the generating function at time n. It is readily
seen that in general such a family of functions will not exist. For example, if
such a family exists we must have f(s) = nth iterate of fi/.(s) for arbitrarily large
integral n, so that f(s) cannot be a polynomial of degree > 2.

The functional equation ¢(sz) = fl¢(s)] shows that f(s) = ¢[ze " (s)], whence
fa(s) = ¢[x"¢7'(s)] for integral n. The expression ¢[z"¢ "(s)] then might be
taken as the definition of f,(s) for all positive n. See Hadamard, [9]. The prob-
lem of determining whether the functions so defined are a family of generating
functions will be discussed in a subsequent paper. We remark, however, that

. s
if f(s) has the form o —

s
have the form m ; they are clearly generating functions for all posi-

s considered in section 5 then the iterates f.(s)

tive n, satisfying the required relation fa,(fs,) = fa, + », . Now suppose g(s)

. . . _ g(s) .

is some function such that the function f(s) = ¢7*| — =~~~ |isa generat-
=02~ @ - Dgls) |28

ing function for all z > 1, with g(1) = 1. As pointed out by Ulam and Hawkins,

the iterates of functions f(s) of this form are convenient to work with, the nth

iterate being simply g~ [x” - (j,.( s)_ g (s):|' In addition, the requirement that

f(s) be a generating function for all x > 1 shows that the functions f,(s) are
generating functions for all n > 0. The simplest function g(s) which satisfies our
requirements is g(s) = s”, where m is any positive integer. In this case f(s)
has the form considered in (5.1) and fu(s) = slz” — (" — D)s™ ™™, Asn—0

we have f,(s) = (1 - = log z)s 4+ R8T Iog Temtt 4 O(n*). Wemay interpret this

as follows. A particle in existence at a glven time may, in a short time interval
At log x

At, either split into m 4 1 particles, with probability ; or it may remain

unaltered, with probability 1 — %(;—g—f.

If it splits, each particle produced
has the same chances for splitting as its parent, etc. Thus, from the results of
section 5, it follows that if we begin with a single particle at time ¢ = 0, the
asymptotic probability density function for z,/z‘, where 2z, is the number of
. 1

particles at time ¢, is given by (m™/™"™ /™)) P<;z>

It is, of course, customary to begin with the elementary probabilities for a
certain number of births in a short time Af and determine the functions f,(s)
from these by means of differential equations. See, for example, Arley, [17].
The results of the present paper can be applied in some cases to the continuous
problem even when an explicit determination of the f,(s) is difficult. A discus-
sion will be given in a later paper.
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9. Some proofs. We. give in this section proofs for (A) theorem 3.3, (B)
theorem 3.4, (C) theorem 4.2, and (D) theorem 4.3; in certain cases we shall
indicate slightly more general results.

(A) We make use of a result of Koenigs, in the form applicable here.

Koenics’ THEOREM: If |s| < N < 1 and ¢ # 0, then ku(s) = qiB(s)-
[1 4 O(qr)] where B(s) is analytic for | s| < \ and satisfies the functional equation
Bik(s)] = qiB(s).

Here, O(gi’) means bounded by Aqi , where 4 isindependent of s. 'We remark
that B(s) # 0. The proof of Koenigs’ theorem follows readily if we write ka(s) =

n—1

gt k() 11 {1 + ks (s)]} where £(s) = k(s) —-a.

J=1
Now let ¢ be a positive number such tha,t |¢¥(s) | < 1when0 < |s]| < tand
Re(s) < 0. (For the rest of this proof we assume Re(s) < 0.) Such a number
exists; on the i 1mag1nary axis we have y(it) = 1 + it — LE[(w'))]f* + o(*) where
[(wf)] > 1, w’ having the distribution branching from k(s), showing that
|G| <1 if t ¥ 0 and sufficiently small; while if Re(s) < 0 we refer to the

expression ¥(s) = f e“dH(u). Let A = Max |y(s) |for &/z < |s| < 4.

If | s| > t let N(s) be the smallest integer such that | s |/2”® < ¢, . Then
#(5) = Tl (s/2" )] = G OB(s/s 1 + 0(@™)] =B + 0@ ).
Now B(y(sz)] = qBly (s)] Let M(s) = | s|"Bly(s)]. Then M(sx) = M(s).
Also log. | s/ti| < N(s) < 1 + log.|s/t:|, and theorem 3.3 follows. Clearly
M(s)/|s|" is continuous for 4z < | s| < ¢, and hence, by functional continua-
tion, wherever Re(s) < 0, s = 0.

Concerning the remarks following Theorem 3.3 we have the following:

(a) If Ezi < o, r-fold differentiation of ¥(sz") = kaly¥(s)] gives, for |s| >
L >0,

0.1 96 = L2 e [v ()]

where Q,; is a polynomial in :p“’(f) RN <in> Now | ka(s) | = O(gr)

when | s| < \; because of analyticity, the same must be true of | k() | -
Putn = N(s)in (9 1), N (s) being the integer defined above. Since ki [y (s/z")] =
0(gY) = 0((1/ | s |")), remark (a) follows.

(b) B(s) is clearly > 0 when s > 0; hence M (s) > 0 when s <0. Since B(0) =
0, B(s) s 0 for sufficiently small s > 0; since ¥(s) —0as|s|— o, M(s) # 0
for | s | sufficiently large; since M (sz) = M(s), remark (b) follows.

(c) Ify = «,ie., ¢ = 0, then k.(s) goes to zero with great rapidity asn — o,
if | s| < 1. The general line of argument is clear.

(B) Let I(s) be a polynomial of degree d > 1 with real coefficients, k(s) =
Q@+ -+ qas”, with a non-negative double point, k() = a > 0, and such that
k(s) > swhen s > a. Lety(s) be any solution of the functional equation ¥(ms) =
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k[ (s)] which is continuous for s > 0 and satisfies Y(s) > o for s > 0; here m is any
number > 1. Then theorem 3.4 holds, with x replaced by m.
It is not difficult to show that if @ < 81 < s < s, lim £;(s) = o« uniformlyin s.
i-»®

13 .
Hence ¢(s) — o ass — . Write R(s) = log <1 + ;qu_,-s"’). Thend™"-
d j=1

log y(sm™) = d" log kalp(s)] = (1 — ™) log go/(d — 1) + log ¥(s) + g

dR(k;—1[¢(s)]), s being taken large enough so that R(k;[¥(s)]) is continuous.
Thus, since the functions R(k;_1¢(s)]) are bounded, the functions d” " log ¢ (sm™)
converge uniformly, for s sufficiently large, to a continuous function L*(s) satis-
fying L*(ms) = dL*(s). Let L(s) = ¢ °L*(s), where p = log, d. Theorem 3.4
now follows wby an argument similar to that used to conclude theorem 3.3.

(Note that 2 d R(k;u[¢()]) = 0@d™™).
n41
(C) In order to avoid negative signs we work with the Laplace transform in-
stead of the m.gf.

Let H(u) be nondecreasing on (0, ) with H(0) = 0; let ¥(s) = f e "™ dH (u)
0

be finite for s > 0. Suppose ¥ (s) = llés{) + o(—j;) ass— o, where 0 < y < |
M(s) is continuous and satisfies M (sx) = M(s) for s > 0, x being some number

(v) _ M)
>1. Thenlim [ dv m+1)f .

Following the hnes of the proof of Karamata s theorem, we see that for any

47 Yy
y >0, f s"(s)ds = D + o(1) as s — « where D = fM(s)ds ie., f st
y
dsf ~“ dH(u) = D + o(1), or replacmg s by (n + l)s,f vt dsf e M.

AH@) = D/v + 17 + o) = fiis f ~¢ ™5™ ds + o(1). Tt follows as in

[14], pp. 189-192, that if F(u) is any function of bounded variation in (0, 1) we
have

]

W _ - D [ _ o\
. y—1 SU SU — 8 8y v—1
9.2) lim f,, s ds l e F(e™™) dH(u) = o) fo e ' F(s°)s" " ds.

Yoo
Let F(e=*) = e*if 0 < s < 1 and O otherwise. Then the theorem follows from
(9.2).

(D) Theorem 4.3 is true if F(u) is any bounded monotone increasing function.
For simplicity we assume that F(1) = 0; it is readily seen that this causes no
loss in generality. The proof is given for the case 1 < p < oo; it will be clear
that p = 1 implies @ = «, while if p = o« (or if £(s) is not entire) @ =

Suppose m and 7 are positive integers such that m/n < p/(p — 1). Then

(9.3) flw exp (u™™) dF(u) = TZ=; 717! flw w AR () < n Y Kﬁ—%@;—g’—n]—l Cirtiim

r=0



BRANCHING PROCESSES 493

E(k) (0)
k!

n 1
the positiveness of all terms involved. Suppose 0 < € < m (l — ;) ; for k&

where ¢, = ; interchange of integration and summation are justified by

sufficiently large the inequality ¢ < k™79 is satisfied; see [18], p. 253.
Hence using Stirling’s formula, we see that the last series in (9.3) is dominated
by a series whose rth term, for r sufficiently large, is controlled by the factor

1—-Q1 — . 1 n . . .
prr=@/etemim) - Qincel — = 4 € — o 18 negative, the series, and hence the
p

integral, converges. We have thus proved L + -

Q

m—l

Conversely, suppose%z > p i . Let £(s) = Zsk(s), where £:(s) = ch+rm

1
"k =0,1,---,m — 1. At least one of the functlons £1(s) must be of order
p. We suppose that £(s) is; if not the argument would need only slight modi-
fications. We have

" min (rm)! crm
(9.4) fl exp (u™™) dF(u) > Z (CEDIE

1 =
Suppose0 < e <1 — S m From [18], p. 253, the inequality ¢, > (rm)~"™¢/**9

must hold for infinitely many values of ». As in the first half of the proof this
1 1
shows that the series and the integral in (9.4) diverge. Thus ; + Q > 1 and

the proof is complete.

If p is rational, the conjecture following theorem 4.3 can be proved in a similar
manner making use of a relation between the class of an entire function and the
coefficients of its series expansion; see [14], p. 95.
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