APPLICATION OF THE METHOD OF MIXTURES TO QUADRATIC
FORMS IN NORMAL VARIATES

By HerserT RosBINS AND E. J. G. PrrMAN
Institute of Statistics, University of North Carolina

1. Summary. The method of mixtures, explained in Section 2, is applied to
derive the distribution functions of a positive quadratic form in normal variates
and of the ratio of two independent forms of this type.

2. The method of mixtures. If
(1) Fo(.’l}), Fl(x)’

is any sequence of distribution functions, and if

2) Co,Cly et

is any sequence of constants such that

3) c; >0 G=0,1,--), Ze; =1

(all summations will be from 0 to « unless otherwise noted), then the function
4 F(z) = Zc; F (x)

is called a mixture of the sequence (1). )

It is sometimes helpful to interpret F(z) in the following manner. Let J, X, ,
X1, - - - be variates such that J has the distribution P[J =j] =¢; (j = 0,1, --+)
and such that X; has the distribution function Fj;(z). Let X be a variate such
that the conditional distribution function of X given J = j is F;(z). Then the
distribution function of X is

PX <z]=2P|J =j]-PIX L<z|J =jl = Z¢; Fj(x) = F(x).

This interpretation of F(zx) will, however, not be involved in the present paper.

The following statements are proved in [1). If x = (z1, -+ -, z,) is a vector
variable the function F(z) defined by (4) is a distribution function, and for
any Borel set S,

®) fs dF(z) = Z¢; fs aF ).
More generally, if g(z) is any Borel measurable function then
©) [ o@ aF@) = 3¢ [ o) apso)

whenever the left hand side of (6) exists. In particular, the characteristic function
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o(t) corresponding to F(z)_is '
) () = Zc; pi(t),

where ¢;(¢) is the characteristic function corresponding to F;(x).
If each F;(x) has a derivative f;(x) then F(x) has a derivative f(z) given by

®) f@) = Z¢;fi@),

provided that this series converges uniformly in some interval including z.
Conversely, if (8) is the relation between the frequency functions and if the
series is uniformly convergent in every finite interval, then the relation between
the distribution functions is given by (4). In practice we deduce (4) from (8), or,
using the uniqueness theorem for characteristic functions, from (7).

As regards computation, we observe that for any integers 0 < p; < p; and
for any z it follows from (3) and (4) that

p1—1

0<Flo) — S i) = 5 o Fya) + i:: & F3(a)

(9) p1—-1 p1—1 D2 P2
< swp (@) (3 o) + mwp 1@ (1 -5 - Bo) <1~

i<»1 0 i>p2 0 31 P1
The existence of these upper bounds (the last a uniform one) for the error term
when the series (4) is replaced by a finite sum shows that series expansions of the
mixture type (4) are especially well adapted to computational work.

For some purposes it is useful to consider series expansions of the type (4)
where the ¢; may be of both signs and where the series Zc¢; may diverge. Both
parts of (3) will, however, be satisfied in the cases considered here.

If U, V are independent variates with respective distribution functions
F(z), G(z) we shall denote the distribution function of any Borel measurable
function H(U, V) by

HWU, V) (F(z), G(z)).
Now if F(z), G(z) are both mixtures,
F(z) = Z¢;Fj(x), G(z) = Zdi Gr(®),
then by (5),

PHU, V) <ad = [[  aFe) a6w)
{H (u,v) <z}
= X¥¢; dy f f dF;(u) dGi(v),
{H () <3)

so that
(10)  H(U, V)(2c; F(x), Zdi Gi(x)) = ZZc; di H(u, v)(F j(x), Gi(x)).
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As an application of the principles set forth in this section we shall express
as series of the mixture type (4) the distribution functions of any positive
quadratic form in normal variates and of the ratio of any two independent forms
of this type..Special cases of the problem have been dealt with by Tang [2],
Hsu [3], and many others, but the method of mixtures permits a unified and
simple treatment of the general case.

3. Distribution of a positive quadratic form. We shall denote by F,. (z) the
chi-square distribution function with » > 0 degrees of freedom,

=0 (x <0)

The corresponding characteristic function is
(12) en() = f ¢ dF,(z) = (1 — 2it)™ = w',
0

where we have set w = (1 — 2:t)”". We shall denote by x> any variate with

the distribution function (11).
Let a be any constant such that ¢ > 0. The characteristic function of the

variate a- x5 is
_*n

(13) (1 —2ia)™ = [a(1 — 2t) — (a — DI = a‘*"-w’"-(1 - <1 - é)w) .
By the binomial theorem we have for any a > 0,
(14) (=D s (ei<[i- 1

@ a o a ’
where )

1,(1 oo (L i — i

nG3n + 1) j|(2n+1 1)_<1_ 1) G=01 ).

For a > 1 we see from (15) that all the ¢; are non-negative. Likewise for a > 1
(and hence d fortiori for @ > 1) we have |1 — 1/a|™ > 1 so that (14) holds
for all | z| < 1; setting z = 1 it follows that the sum of all the ¢; is equal to 1.

Hence fora > 1,

(15) C; = a—*"-

Cj_>_0 (j=0,1,”'), 26j=1.

Since [w | = |1 — 2it[™ < 1 for all real ¢ it follows from (13) and (14) that
fora > 1,
(1 — 2iat)™*" = Z¢; W™ = Ze,(1 — 2uit)7v

(16) = 2¢;j Pny24(t)-
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Hence for a > 1 the distribution function F,(z/a) of the variate -} is a mixture
of x* distribution functions,

) Fa(x/a) = Zc; Fry24(2),

where the ¢; , determined by the identity (14), are the probabilities of a negative
binomial distribution.

It may, in fact be proved by a direct analysis, which we omit here, that (17)
holds for any a > 0. However, if a < 1 then the ¢; will be of alternating sign,
and if @ < % then the series =c¢; will diverge. This shows incidentally that a
relation of the form (4) can hold even though the series =c; diverges and hence
the corresponding relation (7) does not hold for ¢ = 0.

TueorEM 1. Let
X = a(szn + a'len! + e + aran,),
where the chi-square variates are independent and a, ay , - -« , ar are posilive constants
such that
a;>1 F=1,---,71).
Define constants c; by the identity'
r —im; X
(18) H{a.-_*""[l - (1 - (1;>z] } = X¢; 7 (Jz] <1);
i=1 )
then obviously
c; 20 G=0,1,---), Zc; = L

Let

M=m+m+ -+ m;
then for every x,
(19) PIX < 1] = Zej Farsas(a/a).
For any infegers 0 < p1 < p; and every x,

D2
0 < PIX < ] — D ¢jFupi(z/a)
»1

(20) < Fu(z/a) (pfl 0:') + Fuyop,i2(z/a)- <1 - leoflc,- - :Zj 0:')
<1- :Zj Cj.

Proor. The characteristic function of X/a is, by (13) and (18),
r —3m .
o(t) = wH™. H{a?*"“ [1 - (1 - l)fw:! } = Zc;wt™ = Te; puyi (1)
=1

Qs

1If r = 0 we regard the left hand side of (18) as having the value 1.
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Hence for any y,

P[X/a < y] = Zc; Fuiai(y),
whence (19) follows on setting x = ay. Finally, since F(z) is a decreasing function
of n for fixed z, (20) follows from (9).

It should be observed that the coefficients ¢; determined by (18) can be
written explicitly as the multiple Cauchy products

ci= 2 enyreeih

I

where

Cij =

e, Qs+ 1) o Gt — 1) .(1 _ 1)’
i j! a;

The c; may be computed stepwise by the relations

C?) = O,
i

e = D (e - e (s=2++-,71),
=0

cf-') = Cj.

4. Distribution of a ratio. The ratio xa/x. of two independent chi-square
variates has the distribution function

_ TGm +n) [* sm 3
(21) Fm.n(x) = m L‘ u*m (1 + u) domtn) du (x > O),
=0 (z <0),

In computational work we can use the tables of the Beta distribution function

I(r,s) = I%;I—_I—,%[u"l- 1—-uw)du (O<z<1),

=0(z<0), 1(2>1),
together with the identity
Fun(@) = Lya+a(Gm, 3n).
THEOREM 2. Let ‘

x = @0+ o + - + axn,)
X + bixa, + o0+ bixa,

b

(22)

where the x* variates are independent and @, a1, <++ , @, , b1, ++ , by are positive
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constants such that

@G=1-,r5=1,---,9).
Define constants c; , dx, by the identities

e [1- (1= 1)) 7} = 2, (21 < D)
.-I:Il{b'%' [1 _(l - 11)_'.)2]—;".-} = Zdd;

CjZO, 2c,~=1, dk_>_0, Zd, = 1.

then

Let
M=m+m+ - +m, N=nt+mnm+- - +n;
then for every z,
PIX < z] = ZZcjdi-F yizj ni2(x/0),
and for any integers 0 < p1 < P2, 0 < @1 < q2' and every x,

P2 42

0< PIX <z] — 2D ¢idi - Fayajnia(z/a)

P11 91
P2 q2
< (1 - Zc,-)-(l - Edk).
» q1
ProoF. Let U, V denote respectively numerator and denominator of (22).
From Theorem 1, ‘
P[U < 2] = Z¢; Fusai(z/a),
P[V S x] = 2d; F’N.m,(x).
Hence by (10), for every z,
PX <z] = P[U/V £ x] = ZZ¢; i F ayoj ns2(2/0).
The rest of the theorem is obvious.
CoroLLARY. Let
2
XM
ax: + bxs’
where the x* variates are independent and
0<a<hb
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Define
a = a/b, N =r+s,
1o(1 e P )
cj___aic.23(28+1) 5 78 +J 1). 1 - a) (]-=0,1’”_);
then
cJ'ZO (j=0,17"’)’ 2Ze; =1,
and for every x,

PIX < z] = Zc¢;j Fu,yp2i(az).
For any integers 0 < p1 < p2 and every z,

2

0 < plX >al — 3cill — Fawiss(az)]

1
1—1

(23) <1 = Fun(a)] - (E c,-) 1 = Fumisyeaa)]

p1—1 P2 D2
'(1 -2 - Z%’) <1-20c
0 1 1
Proor. Except for (23) this is a special case of Theorem 2. To prove (23)
we observe that
PX > 2] =1 — P[X < z] = Z¢jll — Fu,npilax)],

and since for fixed m and z, F,, .(z) is an increasing function of n, (23) follows
in the same way as (9).

6. The non-central case. Let ¥ be normal (0, 1) and let X = (¥ + d)?, where d
is any constant. The frequency function of X is, for z > 0,

f(x) = (27!'1?)—}’6—}@2 +2) | (edz‘l + e—da:")/2.
By expanding the last factor into a power series it is easily seen that
(24) @) = Zpjfiei(x),

where fu(x) = F.(z) is the chi-square frequency function with n degrees of
freedom and where

pi = ¢ - (3d) /5! G=0,1,---)
Since the identity
(25) ¢ = 3pi (all 2)
holds, it follows that
;20 (G=01,--), Zp;=1
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The series (24) is uniformly convergent in every finite interval, so that we
can write the distribution function F(z) and characteristic function ¢(¢) of X
in the forms

F(z) = Zp;-F142i(x),

o) = Zpj-pr405t) = wg.e—gdf(l—w)’

where again we have set w = (1 — 2t) 7%
Now let Yy, -+, Y, be independent and normal (0, 1) variates and let

(26) X=01+d)+ -+ (Yatd),
where the d; are constants such that

di+ - +d=d.
The characteristic function of X is then

n.e—idz(l‘-w) — intj

o(t) = w Zp;w = Zp; ens2i(0),

and hence the distribution function F(z) of X is again a mixture of x* distribution
functions,

27 F(x) = Zp;-Fay24(z),
where the p; , determined by the identity (25), are the probabilities of a Poisson
distribution with parameter A = 1d’. We shall denote the non-central chi-square

variate (26) by xna -

We can now generalize Theorems 1 and 2 in a straightforward manner to
cover non-central chi-square variates. We shall state only the generalization
of the Corollary of Theorem 2 to the case in which the numerator is non-central.

TaeorEM 3. Let
2
— X M,d
ax: + bxi’

where the x variates are independent and

0<a<hb.
Define
A= 3%, a = a/b, N=r+s
pi = e—)")‘j/j! G=0,1,---),
1(1 e -
o = o - tedo - ) kffs tk—1) (1 - a)f k=0,1,--.);
then

ijO, zpf=17 CkZO, Zep = 1,
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and for every zx,
PIX < z] = Z2p;j ck F o5 non(az).
For any integers 0 < g1 < ¢2,0 < by < he,

g2 h2 g2 kg
0< PIX <7 — Ethjck . FM+2j.N+2k(ax) < (1 - ZP:‘) : <1 - ch>.
91 hy 91

hy
REFERENCES

[1] HerBERT RoBBINS, ‘Mixture of distributions,” Annals of Math. Statistics, Vol. 19
(1948), p. 360.

[2] P. C. Tang, “The power function of the analysis of variance tests with tables and
illustrations of their use,”’ Stat. Res. Mem., Vol. 2 (1938), p. 126.

[3] P. L. Hsu, “Contributions to the theory of ‘Student’s’ t-test as applied to the problem
of two samples,’’ ibid., p. 1.



