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Introduction :

1. The likelihood ratio principle. The development of a theory of hypothesis
testing (as contrasted with the consideration of particular cases), may be said
to have begun with the 1928 paper of Neyman and Pearson [16]. For in this
paper the fundamental fact is pointed out that in selecting a suitable test one
must take into account not only the hypothesis but also the alternatives against
which the hypothesis is to be tested, and on this basis the likelihood ratio princi-
ple is proposed as a generally applicable criterion. This principle has proved
extremely successful; nearly all tests now in use for testing parametric hypoth-
eses are likelihood ratio tests, (for an extension to the non-parametric case
see [33]), and many of them have been shown to possess various optimum proper-
ties.

At least in the parametric case the likelihood ratio test has a number of desir-
able properties. Among these we mention:

(i) Frequently it is easy to apply and leads to a definite and reasonable test.
(ii) If the sample size is large, and if certain regularity conditions are satisfied
an approximate solution can be given for the distribution problems that arise
in the determination of size and power of the test (Wilks [32], Wald [25]). In
fact, if the likelihood ratio is denoted by A, —2 log A approximately has a central
x’-distribution under the hypothesis, a non-central x’-distribution under the
alternatives. The number of degrees of freedom in these distributions equal the
number of constraints imposed by the hypothesis.

(iii) As was shown by Wald [25], under certain restrictions the likelihood ratio
test possesses various pleasant large sample properties.

In view of this, one may feel that the likelihood ratio principle, although per-
haps not always leading to the optimum test, is completely satisfactory, and
that a more systematic study of the problem of test selection is not necessary.
Unfortunately, against the pleasant properties just mentioned there stands a
very unpleasant one. Cases exist, in which the likelihood ratio test is not only
unsatisfactory but worse than useless, and hence the likelihood ratio principle
is not reliable. Examples of this kind were constructed independently by H.
Rubin and C. Stein; the following is Stein’s example.

1 Parts of this paper were presented in an invited address at the meeting of the Institute
of Mathematical Statistics on Dec. 30, 1948, in Cleveland, Ohio.
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Let X be a random variable capable of taking on the values 0, =1, +2 with
probabilities as indicated:

-2 2 -1 1 0
. a a 1 1
Hypothesis H: 5 5 3« 5« a
C

. 1 - 1 1-C/(1 1-C
Alternatives: pC (1 — p)C 1—a(§~a> l—a(i—a) @

Here a, C are constants, 0 < a < %, < C < a, and p ranges over the
interval [0, 1].

It is desired to test the hypothesis H at significance level «. The likelihood
ratio test rejects when X = 4 2, and hence its power is C against each alterna-
tive. Since C' < «, this test is literally worse than useless, for a test with power
a can be obtained without observing X at all, simply by the use of a table of

random numbers. It is worth noting that the test, which rejects H when X = 0,

2—a

_Z > a, so that a reasonable test of the hypothesis in ques-

has power « i

tion does exist.

The existence of such examples gives added importance to the problem of
developing a systematic theory of hypothesis testing. It is the purpose of the
present paper to give a brief survey of the work done on some aspects of such a
theory and to indicate certain extensions and modifications of the existing theory.
Some examples and applications will be considered. These will be restricted to
parametric problems. For applications to testing non-parametric hypotheses
see [12].

The results of sections 5 and 8 were obtained jointly by Gilbert Hunt and
Charles Stein in 1945. They have not been published and were communicated
to me by Professor Stein. I should like to express to him my gratitude for ac-
quainting me with this material and for giving me permission to include it in
this paper. I should also like to acknowledge my indebtedness to Professor
Henry Scheffé who read the manuscript and made many helpful suggestions.

2. Formulation of the problem. The problem of testing a statistical hypothesis
was formulated by Neyman and Pearson [18] as follows.

A random variable X is known to be distributed over a space X according to
some member of a family of probability distributions {P3}, 6 ¢ Q. It will be
assumed here that there is specified an additive class B of sets in ¥, and that
the probability distributions P35 are probability measures defined over 8. All
sets or real valued functions mentioned in this paper will be assumed meas-
urable 8B unless otherwise stated. If B ¢ 8, we shall write for the measure as-
signed to B by Pj interchangeably Pj (X e B), Py (B), and if there is no possi-
bility of confusion, Pe(B). Throughout most of the paper it will be assumed
that the probability measures P§ are absolutely continuous with respect to a
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given sigma finite measure p defined over B, so that there exist non-negative
functions fs such that

@.1) Py(B) = f fo@) du(a).

We shall then say that fs(x) is a generalized probability density w.r. to .

A statistical hypothesis H specifies a subset w of @, and states that the dis-
tribution of X is some P7 with 6 € w. A test of H is any subset w of %, the con-
vention being that H is rejected if the observed value z of X is in w, and that
in the contrary case H is accepted. The selection of w is to be made as follows.
A number « is given, 0 < a < 1, the level of significance, and w must be such

that
(2.2) Ps(w) = afor all 6 € w.

Subject to this restriction it is desired to maximize Pg(w) for 0 in @ — w. The
interpretation of these conditions is immediate. Since Ps(w) is the probability
of rejecting H computed under the assumption that P§ is the distribution of
X, equation (2.2) states that the probability of rejecting H is to be a (usually
some small number such as .01 or .05) whenever H is true. Similarly the second
condition expresses the fact that H is to be rejected with high probability when
fisin @ — w.

Naturally the second condition is not to be taken literally but rather as a
loosely stated principle of choice. For in general there will exist a unique set
w maximizing Ps,(w) for any given 6; ¢ @ — w, but this w will change with 6, .
The condition has a clear meaning only in the case that the set @ — w contains
only a single point, and in a few special problems in which the same set w maxi-
mizes Ps(w) for all § ¢ @ — w. In the general case there are available two main
methods for making the condition precise. One may restrict consideration to
some class of “nice” tests, so that within this class the maximization of Py(w)
can be achieved uniformly for 6 e 2 — w. Alternatively, instead of asking that
a local optimum property hold uniformly, one may look for a test whose power
function possesses some optimum property in the large. Both of these ap-
proaches have an element of arbitrariness. In the first, the selection of a class
of nice tests, in the second, the choice of an appropriate optimum property.
Fortunately, in a number of important special cases, both methods, for various
reasonable definitions, lead to the same test.

Before proceeding with this development, we shall modify the formulation
of the problem slightly. First, as has been pointed out by many writers, it seems
more natural to replace (2.2) by

(2.3) Py(w) = aforall 6 ¢ow.

Secondly, we shall permit “randomized” tests (see [11, 29]), that is, instead of
demanding that the statistician decide for each value of x whether to accept
or to reject H, we shall allow the possibility that for certain  the decision be
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reached by means of some chance device such as a table of random numbers.
By a test of H we shall therefore mean a function ¢ from % to the interval
[0, 1], with the convention that when z is the observed value of X some chance
experiment with two possible outcomes R, R will be performed such
that P(R) = ¢(x), and that H will be rejected when the outcome is R and will
otherwise be accepted. The case of a non-randomized test w clearly is obtained
as a special case by taking for ¢ the characteristic function of the set w.
For a test ¢ the probability of rejection is given by

24) [ 6@ a Pi@) = Ea(X)

where E, denotes expectation computed with respect to the probability dis-
tribution P§ . We therefore obtain the following formulation of the problem:
To determine a test function ¢ (0 < ¢(x) =< 1) which maximizes Ep $(X), the
power of ¢ against the alternative 6, for 6 in @ — « subject to the condition

(2.5) Ewp(X) = aforall 0 ew.

- In this connection it is convenient to use the term ““level of significance” for
the preassigned number «, and to define the size of the test ¢ as

(2.6) sup Ey¢(X).

Except in the trivial case that there exists a test of size < « whose power is 1
against all alternatives, the size of any optimum test (in fact, of any admissible
test) equals the level of significance.

3. Testing against a simple alternative. A complete solution of the problem
formulated in the last section is available only in the case that w and @ — o
each contains only a single point, that is, in the case that both the hypothesis
and the alternative are simple. The solution is then given by the fundamental
lemms of Neyman and Pearson [18], which we may state in the fol-
lowing slightly more complete form.

TrEOREM 3.1. Let

3.1) Py(4) = [ (o) du@).

(a) For testing the hypothesis H: 0 = 6, against the alternative 6 = 6, at level of
significance a, there exists a number k and a test ¢ of size a such that

é(x) =1 when fo,(x) > kfo,(x),

¢(x) = 0 when fo,(x) < kfo ().

(b) If fo,(x) and fo,(x) are % O for all x in %, then a test ¢ is most powerful for
testing H against 0 = 6, if and only if it satisfies (3.2) except possibly on a set
of u— measure 02 . (Note that the number & of (3.2) is essentially unique).

(3.2)

;;'Throughout the paper we shall consider two tests as equal if they differ only on a set
of u-measure 0.
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The second half of the theorem may be paraphrased by saying that under
the conditions stated the most powerful test is uniquely determined by (3.2)
except on the set on which
(33) fol(x) = kfoo(x).

On this set the value of ¢ may be assigned arbitrarily provided the resulting
test has size «. If in particular the set on which (3.3) holds has measure 0, the
most powerful test is unique.

It should be mentioned that (3.1) is no restriction since any two probability
measures Py, P, defined over a common additive class can be represented in
this form with u = P; + P.. If the assumption of (b) is not satisfied, the
theorem is still true in essence but some trivial modifications are necessary.

No such complete solution is available for the problem of testing a composite
hypothesis against a simple alternative. However, as was shown in [11], this
problem may in many cases be reduced to the one just considered. Let the
hypothesis state that ¢ is an element of w, and consider the simple alternative
6 = 6, . Suppose that an additive class of sets has been defined on w (in most
of the applications w is a subset of Euclidean space, and the additive class is
formed by the Borel sets contained in w). Then for any probability distribution
A over w,

(34) m@ = [ i) an©)

is a probability density function with respect to u.

Under certain conditions to be stated below, the most powerful test ¢, for
testing the simple hypothesis H) that X is distributed with probability density
hx against the alternative fp, is also most powerful for testing the original hy-
pothesis H against the same alternative. This is essentially the Bayes approach
developed by Wald for his general decision theory, and in fact, under the con-
ditions which we shall state, A is a least favorable distribution over « in the
following sense. Let B\ be the power of ¢\ against fy, , and for any distribution
A* over w denote by H)., ¢xe , Bre the associated hypothesis, the most powerful
test for testing it against fy, , and the power of this test respectively. Then A\
is said to be least favorable if for all A*

(8.5) By = B

TaEOREM 3.2. Suppose there exists a probability distribution \ over w such that
the most powerful test ¢ of size o for testing Hy against fy, is of size a also with
respect to the original hypothesis H. Then
(i) ¢ is most powerful for testing H against fo, ;
(ii) A 7s a least favorable distribution.

Also, if ¢\ is the unique most powerful test for testing Hy against fy, , it is the
unique most powerful test for testing H against fo, .

These results are essentially contained in Wald’s work (see for example
theorem 4.8 of [26]).
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There are many trivial applications of this theorem to finding most powerful
tests of one-sided hypotheses concerning a single real-valued parameter, such
as testing H: p < p, against p = pi(pe < p1) when X has a binomial distribu-
tion with parameter p. As is well known, it turns out in a number of these cases
that the most powerful tests are in fact uniformly most powerful against the
one-sided class of alternatives.

In [11] Theorem 3.2 was used to determine most powerful tests of certain
hypotheses concerning normal distributions. As an example consider the case
that X,, ---, X, are independently normally distributed with common mean
¢ and variance ¢% . Denote by H, and H, the hypotheses ¢ = 1 and & = 0 re-
spectively, and let the alternativebe: £ = £, ¢ = o} . Then the most powerful
test of H, rejects if .

3.6) 2(x; — &) < ki when o < 1,
Z(x; — £)?> ¢ when o > 1,

and accepts otherwise. Here k; and ¢, depend only on the level of significance,
that is, are independent of £, a1 . If £ > 0, the most powerful test for testing
H, rejects if ,
Z(xs — b)? < kob* when o < 3,

T
= = =
'\/m_w when a_%,

and accepts H; otherwise. Here k; and c; depend only on «, while b depends on
fl y 01 and a.

These results indicate that even when the class of alternatives is larger than
in the above problems, some improvement over the standard tests may be
possible provided good power is desired only against a narrow class of alter-
natives.

4. Sufficient statistics. Before treating the problem of composite alternatives;
we shall consider an important simplification that can be obtained by making
use of sufficient statistics. This notion was introduced by R. A. Fisher, and was
further developed by J. Neyman [13] and in [2] and [10]. Consider any meas-
urable partition of X. For any point z in ¥, let ¢(x) be that set of the partition
in which x lies. A set in the range of ¢ is said to be measurable if the correspond-
ing set of points z.is an element of B. Denote the class of measurable t-sets by
. Then the statistic T = ¢(X) is a random variable defined over %. Kolmogoroff
has shown how for any B ¢® one can define the conditional probability
P(B | t) of B given T = ¢ uniquely up to a set of measure zero by the equation

3.7

1) P(BNEY(A)) = f, P(B|#) dP™(t) forall A el

Suppose now that we are given a class § of probability distributions for X,
§ = {P7}, 60 €Q. Denote by Py(B|t) the conditional probability of B given
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T = t computed for the distribution Pj . The statistic T is said to be a suffi-
cient statistic for § (or for 6) if for every B ¢ B there exists a determination of
Py(B | t) that is independent of 6.

According to the above definition of statistic, {(z) is an element of a meas-
urable partition. However, one may consider instead any function £* for which
t*(x) = t*(2’) if and only if {(x) = t{(z’), that is, any function that leads to this
partition; the values that the function takes on are really immaterial. It will
be convenient here to use this wider definition of statistic. For a rigorous treat-
ment of some of the problems that will-be referred to one needs to define an
equivalence of statistics and to include in this definition the appropriate nullset
considerations. A detailed account of these matters is given in [2] and [10].

From our present point of view tests are compared golely in terms of their
power functions. On this basis two tests ¢; and ¢, may be considered equivalent
if they have identical power, that is, if

4.2) Ew(X) = Egpe(X) for all 6 e Q.

We can-then state

- TueoreM 4.1. If T is a sufficient statistic for 0 and $(X) any test of a hypothe-

815 concerning 0 then there exists an equivalent test that is a function of T only.
The proof of this theorem is immediate since

(4.3) ¥(T) = El$(X) | T]

is such a test.

It follows from Theorem 4.1 that we lose nothing by restricting considera-
tion to tests based on a sufficient statistic. The problem of determining whether
or not some statistic is sufficient for a given family of distributions is simplified
through the use of a criterion for sufficiency that can be checked on sight. This
criterion is due to Neyman [13] who proved it in a somewhat special setting,
and was recently proved in a very general form by Halmos -and Savage [2].
It states that if § = {ps}, 0 € Q is a family of generalized probability densities
for X, then under certain mild restrictions a necessary and sufficient condition
for T = ¢(X) to be a sufficient statistic for { is that ps(z) factors into one fac-
tor depending on 6 but on z only through ¢(z) and a second factor depending
only on z.

The question arises as to which of various sufficient statistics to use. Since
the purpose of introducing sufficient statistics is to reduce the complexity of a
given statistical problem, one is led to seek a sufficient statistic that reduces
the problem as far as possible and hence to the notion of a minimal sufficient
statistic, a sufficient statistic 7' being minimal if it is a function of every other
sufficient statistic (see [10]). It can be shown under fairly general conditions
that a minimal sufficient statistic exists, and one can give an explicit construc-
tion for it.

3 A justification for the use of sufficient statistics in the general statistical decision prob-
lem was given in [2].
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As one would expect it turns out that the sufficient statistics commonly
associated with various families of distributions are actually minimal. Thus for
example, if X7, ---, X, are independently normally distributed with common
mean £ and variance ¢° , the statistic (X, Z(X; — X)) is a minimal sufficient
statistic for § = (¢, o). If Xy, - - - , X, are independently uniformly distributed
over (0, §), max(X;, ---, X,) is the minimal sufficient statistic for 6. If § is
the family of distributions according to which X;, --- , X, are identically in-
dependently distributed according to an arbitrary univariate distribution (or
according to an arbitrary probability density with respect to a fixed univariate
measure), then the minimal sufficient statistic is obtained by defining for each
point £ = (1, -- -, Z.) the set {(x) as the set of points obtainable from z by
permutation of coordinates. Alternatively one can define it by t(zy, -+, z.) =
(Cx:, 22k, -+, ZxP).

6. The principle of invariance. The notion of invariance was introduced into
the statistical literature in the writings of R. A. Fisher, Hotelling, Pitman [20]
and others, in connection with various special problems. A general formula-
tion was given by Hunt and Stein who, in an unpublished paper [5], utilized
this notion to find most stringent tests, and who obtained the examples of uni-
formly most powerful invariant tests that will be given below. The point of
view in the present section is different from theirs however, since here invariance
will only be considered as an intuitively appealing restriction that one may
wish to impose on statistical tests.

We shall begin by considering an example. Suppose it were known that the
height of people is distributed about a known mean, which for convenience we
shall take to be zero, either according to a normal or to a Cauchy distribution,
with unknown scale factor so that either

2
(5.1) fo(x) = :/‘;:w‘eexp (———2%5,) 0<0<
or
(5.2) =21 0<o<w
w6 4 a?
Suppose we wish to test from a sample X, - -- , X, the hypothesis H that the

true probability density belongs to the first of these classes against the alterna-
tive that it belongs to the second. Then it seems desirable that the decision of
whether or not to accept H should be independent of the scale adopted for
measuring the heights. For otherwise one worker expressing his data in feet
might reject H while another worker using the same data but.expressing them
in inches would reach the contrary decision (In this connection see for example
[34], p. 104). A “nice” test function ¢ therefore would be independent of the
choice of scale, i.e., it would satisfy the condition

(5.3) ;b(cxl , o, CTn) = ¢(@1, -+, ) for all ¢ > 0 and for all (z;, -+ ,Za)

except possibly on a set N, independent of ¢ and of measure zero.
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On analyzing this problem one is led to the following observation. Multiply-
ing each of the random variables X;, ---, X, by the same constant leaves
both w and 2 — w invariant, i.e., if the X’s are normally distributed with zero
mean and arbitrary scale so are ¢X,, --- , cX, , and analogously for the Cauchy
distributions. It is this fact that makes it so desirable to have ¢ invariant under
multiplication of the z’s by a common constant.

More generally consider measurable 1:1 transformations g of ¥ into itself,
and let ¥ = gX. Suppose that when X is distributed according to f ew, Y is
distributed according to 6’ e v—we shall then write 8/ = gé—and that as 6
ranges over w so does ¢'. Suppose that the analogous condition is satisfied for
Q — w, so that the problem of testing w against @ — w is left invariant under g.
Now whether one expresses the observations in terms of X or in terms of Y is
essentially a matter of choice of coordinates. The principle of invariance asks
that if such a change of coordinates leaves the problem invariant, then it should
also leave the test invariant, i.e., if G is a group of measurable 1:1 transforma-
tions of X such that

(5.4) go = wand g — w) = 2 — wforallgeG,
then ¢ should satisfy the condition
(5.5) o(gr) = ¢(z) for all g € G,

and for all z except on a set N independent of g and such that u(N) = 0. If this
condition were not satisfied, two workers, using the same data but expressing
them in different coordinate systems might arrive at contrary conclusions.

As an example consider the general linear univariate hypothesis. In canonical
form X;, -, X, ; X1, -+, Xo; Xo1, - -+, X, are independently normally
distributed with common variance. The means of the first s variables are un-
known, the means of the last n-s variables are known to be zero. The hypothesis
states that the first » means are zero. Adding arbitrary constants to each of the
variables of the middle group leaves w and @ — w invariant. So does any orthogo-
nal transformation of the first » variables, and any orthogonal transformation of
the last n — s variables. Finally, the problem is also left invariant when all of
the variables are multiplied by the same constant. It is easy to see that a
function ¢ is invariant under these transformations if and only if it is a func-
tion -of

2./ 2 i
f=1 f==g4-1
But, as is well known and easy to show, among all tests based on this statistic
there is a uniformly most powerful one, namely the test that rejects H when
DIT YD+
t=1 toeg+1
is too large. Therefore, among all tests satisfying the condition of invariance
the standard test is uniformly most powerful.
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To formulate a corresponding reduction procedure in general, we define a
function A on ¥ to be maximal invariant (under @) if it is invariant
and if h(z’) = h(z) implies the existence of g ¢ @ such that 2’ = gz. Then a
function ¢ on ¥ is invariant under @ if and only if it depends on z only through
h(z), that is, if there exists a function ¥ such that ¢(z) = y¥[h(z)]. Hence a neces-
sary and sufficient condition for a test to be invariant under G is that it be
based on the statistic ¥ = h(X). The principle of invariance therefore reduces
the problem from X to ¥ = h(X). To determine the resulting statistical re-
duction, that is, the simplification of the parameter space, one may consider
the group G of transformations over @ induced by G. If v(f) is a maximal in-
variant function under G, it is easily shown that the distribution of ¥ depends
only on »(6). Hence under the principle of invariance any two 6-values with
common »(6) (that is, such that each can be obtained from the other by a trans-
formation of @) are identified. If in particular »() is constant over w, the hy-
pothesis H, when expressed for ¥, becomes simple, and there may even exist
a uniformly most powerful invariant test.

Besides for the example already mentioned this is the case for Hotelling’s
T?-problem and for the hypothesis specifying the value of a multiple correla-
tion coefficient. Another example is obtained when X, --- , X, are independ-
ently identically distributed, each with probability density ps(xr) where under
H; po(x) = fi(x — 6), (¢ = 0, 1), and where it is desired to test H, against H, .
One may also in this example replace the location parameter by a scale param-
eter or have both parameters present.

It may be worth noting that the likelihood ratio test is invariant under any
transformation leaving the statistical problem invariant. In the problems con-
cerning normal distributions mentioned above, when there exists a uniformly
most powerful invariant test, it coincides with the likelihood ratio test. That
this is not so in general can be seen from Stein’s example given in section 1.
There the problem remains invariant under multiplication of X by —1, and
there exists a uniformly most powerful invariant test. However, the likelihood
ratio test is instead uniformlyleast powerful.

For certain applications it is more useful to consider a somewhat weaker
definition of invariance. We shall say that a function ¢ is almost tnvariant under
a group @ of transformations if for each g € G, ¢(gr) = o(z) for all z except on
a set N, such that u(N,) = 0. This definition differs from the previous one in
that the null set N, is now permitted to depend on g. It was shown by Hunt
and Stein that under certain conditions on @, which are satisfied for the prob-
lems mentioned above, any almost invariant test is.invariant.

We have indicated how for certain hypotheses one can find a group of trans-
formations leaving the problem invariant, such that among all tests invariant
under this group there exists a uniformly most powerful one. The guestion may
be raised whether this approach is consistent, or whether there may exist some
other group of transformations also leaving the problem invariant but leading
to a different test. Also in problems where among all invariant tests there does
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not exist a uniformly most powerful one, the question arises whether one is
using the totality of transformations leaving the problem invariant, or whether
perhaps one can reduce the problem further. It therefore seems of interest to
determine the totality of transformations leaving a given problem invariant.
This was carried out for a few simple problems in [8].

We finally mention a connection between the notions of invariance and suffi-
ciency. Consider any problem _in which the variables X;, ---, X, are inde-
pendently identically distributed under all distributions of Q. Such a problem
clearly is left invariant under any permutation of the variables. Actually, these
transformations leave not only w and € —  invariant but each point of Q in-
dividually. No essential reduction of the problem is obtained since the maximal
invariant statistic is a sufficient statistic. It is easily seen that this will always
be the case when the transformations leave @ pointwise invariant, but that in
this way one does not obtain all sufficient statistics. These can be obtained,
however, by considering more general transformations, where each point = of
% is transformed into the points of %X according to a probability distribution P. .

6. The principle of unbiasedness. As a second principle of reduction we shall
consider the principle of unbiasedness proposed by Neyman and Pearson. A
test is said to be unbiased [19] if

Py (rejecting H) > aforall 0 eQ — w.

This seems a desirable property for a test to have since it assures that there do
not exist 6p in w and 6; in @ — w, for which

Py, (rejecting H) > P, (rejecting H).

We shall therefore be concerned in this section with the totality of tests ¢ for
which

Eyp(X) < a forall fecw
Ey¢p(X) > a forall 0¢Q — w.

For a number of important special cases there exists, among all tests satisfying
(6.1), one that is uniformly most powerful in 2 — « and uniformly least power-
ful in w. (The latter property is of course very desirable since when H is true
one wants to reject it as rarely as possible.) This follows immediately from well
known results concerning best similar tests since for the problems in question
Q is a subset of a Euclidean space and for any test ¢, Eyp(X) is a continuous
function of 6. If then A is the set of points that are boundary points both of
w and of @ — o, it follows from (6.1) that

(6.2) Ewp(X) = aforall  eA,

i.¢., that ¢ is similar for 6 in A. But if among all tests satisfying (6.2) there
exists one that is uniformly most powerful in @ — « and uniformly least power-

(6.1)
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ful in w, it automatically satisfies (6.1) as is seen by comparison with the test
(X) = a.

As an example suppose that Xi, ---, X, are independently normally dis-
tributed with common mean ¢ and common variance ¢° . If the hypothesis is
H,: ¢ < 1 and the alternatives are ¢ > 1, the set A becomes the line ¢ = 1.
As was shown by Neyman and Pearson [18], among all tests satisfying (6.2)
with this A, the test that rejects H; when =(z; — Z)* < k (where k is an appro-
priately chosen constant) is uniformly most powerful for # in @ — w, and uni-
formly least powerful for 6 in w.

If instead we consider testing the hypothesis H, : ¢ = 1 against the alterna-
tives ¢ #1, we find that A = o, and our problem reduces to that of finding the
best test among all those that are similar in w and unbiased. As is well known,
it turns out that rejecting when =(z; — %)’ < k and when Z(z; — Z)° > ke
(where k1 < k. are two appropriately chosen constants) is uniformly most
powerful among all similar unbiased tests.

A third hypothesis concerning ¢ that might be of interest is H; : o1 < o <
o2 . Here A consists of the two lines ¢ = ¢; and ¢ = o9 and it is easy to show
that the test that is uniformly most powerful in @ — w and uniformly least power-
ful in w rejects Hj if and only if Z(z; — £)* < ¢ or 2(x: — &)° > ¢, where again
c1 < ¢ are two appropriately selected constants.

The question arises as to the connection of the principles of invariance and
unbiasedness. Clearly if there exists a unique test ¢ that is uniformly most
powerful unbiased, this test is invariant under any group G leaving the problem
invariant. If then in addition there exists a uniformly most powerful invariant
(under G) test, this must coincide with ¢. Thus, if both principles lead to a
unique optimum solution, these solutions coincide.

We have seen that frequently optimum unbiased tests can be obtained
through a study of tests that are similar over certain sets in the parameter
space. The totality of similar tests was obtained for a number of important
problems by Neyman and Pearson. In his 1937 paper on confidence intervals
[15] Neyman gave a general method for constructing similar regions with the
help of sufficient statistics. Let T be a sufficient statistic for 8 e A. The condi-
tion for ¢ to be similar with respect to A and of size «, is that

6.3) Ewp(X) = EE[$(X) | T] = aforall 0eA,

i.e., that

(6.4) E{Ei¢(X) | T] — a} = Oforall 0 ¢eA.
Clearly any test ¢ for which

(6.5) E[¢(X) | {] = afor almost all ¢

is similar. This is the construction given by Neyman, and we shall say that a
test ¢ satisfying (6.5) has the Neyman structure with respect to 7. The ques-
tion whether this exhausts the totality of similar tests is easily reduced to an
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analytic problem the solution of which is known in many special cases. This
method was first employed by P. L. Hsu [3] for some problems concerning
normal distributions, and was extended to other cases in [7]. The present gen-
eral formulation was given by H. Scheffé and the author in [9] and [10]. We
shall say that a family of distributions {P§}, 6 €A, is boundedly complete if

@A) f(®) is bounded,

(i) Eof(T) = O forall 6 eA
imply f(f) = O except on a set N with Ps(N) = O for all § e A. Then we can
state

THEOREM 6.1. A necessary and sufficient condition for the totality of tests simi-
lar for A to have Neyman structure with respect to a sufficient statistic T s that
{Pi}, 0 €A, be boundedly complete.

7. Tests whose power increases with the distance from the hypothesis.
Frequently, even among the unbiased tests, there does not exist a uniformly
most powerful one. The general univariate linear hypothesis with more than
one constraint is an example of this situation. The following extension of the
idea of unbiasedness may then be used to reduce the class of tests still further.
Unbiasedness distinguishes between values of 8 as they belong to w or @ — w.
However, one may further classify the points of & — w according to their “dis-
tance” from w, and then ask of a test ¢ that the further be 6 from « the larger
be the power (,(6).

One possible such ordering of the alternatives is that induced by the envelope
power function. Here the envelope power at § (Wald [24]) is defined by

(7.1) Ba0) = sup B4(6)

veF(a)
where §(a) is the class of all tests ¢ with Ewp(X) < a for all 8 e w. Of two points
6, 02 one may then say that 6, is closer to w than 6, , equally close or less close,
as B% (6,) is less than, equal to or greater than B%(65). The distance of 6 from w
is thus measured by the ease with which one can detect that the hypothesis is
false when 6 is the true parameter value.

When 6 lies in a Euclidean space and 8,(6) is a continuous function of 8 for
all 6, as is the case in most applications, the condition that the power increase
with 8% will usually imply that 8,(6;) = B,(6:) whenever Br(6) = B (02) In
the case of the general linear hypothesis considered in segtion 5, for example,

one would obtain the condition that the power be a function only of > £/
=

where £; = E(X;). As was shown by P. L. Hsu [3], the standard (likelihood
ratio) test is uniformly most powerful among all tests satisfying this condition.
Analogous remarks apply to Hotelling’s T’- problem, and to the hypothesis
spec1fymg the value of the multiple correlation coefficient. The corresponding
optimum properties in these cases were proved by Simaika [21].

It is interesting to compare the above condition with that of invariance.
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This comparison yields nothing of interest if the totality of tests is considered.
We may, however, restrict our attention to tests depending only on a sufficient
statistic T'. We already know that ¢(X) and E[p(X) | T] have identical power.
In order to validate the comparison we wish to make, we state the following

LemMa. Let T be a sufficient statistic for 0 €2, and let G be a group of 1:1
transformations g on X leaving @ invariant. Then if o(x) is invariant under G,
Elo(X) | t] ©s almost invariant under G.

We can now state the desired comparison in the following

TuEOREM 7.1. Let @ be a group of 1:1 transformations on X, let G be the in-
duced group of transformations on Q, let v(6) be maximal invariant under G, and
suppose that G leaves w and @ — w inwariant. Suppose further that T is a suffi-
cient statistic for , and that {P3§}, 0 € Q, is boundedly comiplete. Then a necessary
and sufficient condition that the power of a test Y(T) be a function only of v(6), is
that Y (t) be almost invariant under G.

This theorem is an immediate extension of some results of Wolfowitz [35].

Theorem 7.1 together with the results of section 5 proves that the standard
tests of the general linear hypothesis, Hotelling’s T"-problem and the hypothe-
sis concerning the multiple correlation coefficient possess the optimum property
that was obtained for these problems by Hsu and Simaika, respectively. The
method of proof indicated here is due to Wolfowitz [35].

8. Most stringent tests. We shall now turn to the third aspect of the theory:
Optimum properties defined with reference to the whole class of alternatives,
and attainable with no restrictions imposed on the class of tests. In the present
section we shall consider the property of stringency. Wald [25] defines a test ¢
to be most stringent if it minimizes

8.1 sup [82(6) — B,(0)],

0eQ—w

where 8% again denotes the envelope power, and 8, the power of ¢. The rationale
of this definition is clear. The difference 8%(6) — B,(6) measures the amount by
which the test falls short at the alternative 6 of the power that could be at-
tained against this particular alternative. A test ¢ is therefore most stringent
if it minimizes its maximum shortcoming.

A theory of most stringent tests was developed by Hunt and Stein [5], who
based it on the notion of invariance. Consider, as in section 5, a group G of
measurable 1:1 transformations on ¥ leaving the problem invariant. Hunt and
Stein obtained their results in connection with the following groups of trans-
formations.

() gr =2+ ¢, — ©» < ¢ < «,zareal variable;
(ii) gr = az, 0 < a,  a real variable;
(ili) gr =ar 4+ ¢,0 < @, — © < ¢ < o,z a real variable;
(iv) the group of orthogonal transformations on a Euclidean space;
(v) any finite group.
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TaeoreM 8.1. (Hunt and Stein). If G is the direct product of a finite number
of groups of types (1)—(v), and if G leaves the problem invariant, that is, if G satis-
fies (5.4), then there exists a most stringent test tnvariant under G.

Actually, it is not necessary here to require that G be a direct product. The
result holds also if the factoring of @ is according to normal subgroups, where
the normal subgroup at each stage and the final factor group are of the types
mentioned. In the light of this one may omit type (iii) from the list since it has
a normal subgroup of type (i) with factor group of type (ii).

The proof of Theorem 8.1 isbased on the following lemma, which has appli-
cations to many related problems.

Lemma (Hunt and Stein). If G is a direct product of a finitenumber of groups
of types (1)-(v) then given any function f over X (0 < f(x) < 1) there exists a func-
tion F (0 < F(z) < 1) such that F is invariantunder G, and

®2) inf [ 162)0(@) dute) < [ P@do@) duta) < sup [ 1o @ duto)

for all ¢ that are integrable p.

It follows from Theorem 8.1 that if there exists a uniformly most powerful
invariant test, this test is most stringent. In this way Hunt and Stein show,
for example, (see in this connection section 5), that the likelihood ratio test of
the general univariate linear hypothesis is most stringent. A question that is
left open is the uniqueness of such a most stringent test.

In general, the possibility therefore remains that there might exist another
most stringent test uniformly more powerful than the invariant one. In certain
particular cases this possibility can be ruled out by the following considera-
tion. Suppose that  is a subset of a Euclidean space and that every point of
w is a limit point of @ — w. Suppose further that for any test ¢, Eewp(X) is con-
tinuous in 6. Then clearly, if ¢; is similar of size a for testing w and ¢, is of size
< « but not similar, ¢; can not be uniformly as powerful as ¢; . Hence any test
that is admissible among all similar tests of size « is also admissible among the
totality of tests of size £ a. Now admissibility among all similar tests is some-
times not too difficult to prove. For the likelihood ratio test of the general
linear univariate hypothesis, for example, it is an immediate consequence of
the properties of this test proved by Wald [23] and Hsu [4].

The following alternative method for obtaining most stringent tests is also
mentioned by Hunt and Stein.

TreoreM 8.2. (Hunt and Stein). Let @ — w be partitioned into disjoint sub-
sets Qs such that B%(0) is constant on each Qs , and let o5 be the test that maximizes
0in6f Bos(8). Then if ps = ¢ is independent of 8, ¢ is most stringent.

eus

This result may be supplemented by the following method for finding tests
that maximize inf 8,(6) over a given set of alternatives w1 (not necessarily
0 .

ewl .

satisfying the conditions imposed above on the ;).
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TaeEOREM 8.3. Suppose additive classes of sets have been defined over w and w ,
and constder probability measures N and A\, over w and w1 . Let the functions fo(x)

be generalized probability densities with respect to u, so that h(zx) = f fo(x) dA(6)

and h(z) = f Jo(x) d\(6) are again probability densities with respect to u. Let ¢
3

be the most powerful test of size a for testing the simple hypothesis H:h against the
simple alternative hy , and suppose that the power of ¢ against hy is 8. Then if

Ewo(z) < a forall few,

(8.3)
Ewo(x) > B forall Gew,

) maxz’mz’zesoinf Bo(0) at level of significance a.

€wy

This method, when applicable, has the advantage of giving the totality of
most stringent tests (see in this connection Theorem 3.1) and hence of settling
the question of admissibility. However, in many applications probability meas-
ures A\, A\; with the desired properties do not exist but instead only sequences
A™  A{”, which satisfy the conditions in the limit. In this case again only the
weak conclusion is possible: The test obtained is most stringent but has not
been proved admissible. (For an example in which the analogous method has
been carried through in detail for an estimation problem, see [22]).

Actually, the two methods are closely related, as can be seen from the proof
of the main lemma. In those cases in which there exists a group G giving the
maximum possible reduction, the group G induces a partition of @ (through the
equivalence: 6; ~ 6, if there exists § such that 6, = §6), just into w and the
sets Q; . (This is so mainly because, as was shown by Hunt and Stein, the en-
velope power remains invariant under any transformations that leave the prob-
lem invariant.) Then the measures A, A; over w, 25 respectively, which figure in
the application of Theorems 8.2 and 8.3, become invariant measures over G
through the obvious 1:1 mapping from w and the Qs’s respectively to G. Thus
the second method will allow the strong conclusion when the group @ involved
in the first method possesses a finite invariant measure [types (iv) and (v)] but
not if any of its factors are of type (i)—(ii).

To conclude this section we shall give an example where the method of in-
variance leads only to a partial reduction but where the solution may be com-
pleted by certain additional considerations. Suppose that (X;, ---, X,) is a
sample from a normal distribution with mean £ and variance ¢ , both unknown,
and that we wish to find the most stringent test of the hypothesis H: ¢ = 1
against the alternatives ¢ # 1. Theorem 8.1 reduces the problem to the sta-
tistic Y = =(X; — X)*, but among the tests of H based on this statistic there
does not exist a uniformly most powerful one. It may also be shown [8] that
no further reduction is possible by means of the method of invariance.

However, one may now consider the problem of finding the most stringent
test based on Y. (The envelope power function 8*(¢, ¢) that must be used
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naturally is not the one for Y but that for the original problem.) From an argu-
ment given in [6] it follows that this test is of the form

©Oky ko Teject when ¥V < kyor > ks,

where k; , k; are determined by the two conditions
(i) P(rejection |o = 1) = a,
(li) S:il; [/3:(5’ ‘7) - B‘Pkl,kz(a)] = Sl;fi [ﬁ:(& o) — ﬁf’kl,kz(a)l’

Here B%(%, o) is independent of ¢ and can be obtained from a table of the x-
distribution (with n degrees of freedom for ¢ < 1 and n-1 degrees of freedom
for ¢ > 1 as can be seen from (3.6)). Hence k; and %, can be computed fairly
easily.

Another problem that may be treated in this way is the hypothesis of equality
of variances for two normal samples. If the two samples are of equal size, there
exists a uniformly most powerful invariant test for a suitable group of trans-
formations. However, if the sample sizes are different the method of invariance
reduces the problem only to =(X; — X)* / =(¥; — ¥)*, and the cut off points
giving the most stringent test may be determined by an argument analogous
to that given above.

This method may be extended to allow determination of most stringent test
of hypotheses such as H: ¢1 < ¢ < 0. This requires a certain modification
of Theorem 1 of [6], which is easily obtained. One finds agains that one may
restrict consideration to a one-parameter family of tests (determined by a
somewhat different condition than above), and that among these the most
stringent test is obtained by the analogue of condition (ii) above.

If should be mentioned that the results of [6] apply also to the hypothesis
specifying the value of the parameter in a binomial or Poisson distribution.
This is easily seen since in either case the distributions of @ are absolutely con-
tinuous with respect to a common sigma finite measure and since for the ap-
propriate choice of this measure the generalised density is of the form assumed
for the density in [6]. Hence in both the binomial and the Poisson case the most
stringent test is determined by conditions analogous to (i) and (ii) above.

9. Tests that minimize the maximum loss. In the Neyman-Pearson theory
one classifies the errors into two kinds: Rejecting the hypothesis when it is
true, accepting it when it is false. One may however analyze the situation further
and distinguish, say, between accepting when one or some other alternative is
true. Thus one is led to introduce the losses that result in a given situation from
the various possible errors, and to look for a test that, in an appropriate sense,
minimizes the expected loss. This possibility was mentioned by Neyman and
Pearson [17], and was taken as the starting point of his general theory by Wald
(see for example [24]). '

"In order to stay within the framework of this exposition we shall here in-
troduce losses only for the errors of accepting the hypothesis when it is false,
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while still demanding that the probability of rejection when the hypothesis is
true should not exceed a. Actually, there are many cases where this seems to
be a reasonable formulation. For it frequently happens that the two types of
error entail consequences of such completely different nature that the resulting
losses cannot be measured on a common scale while usually the different errors
of the same type are comparable.

We shall therefore assume that for each 6 e @ — w there is defined a W(9),
which measures the loss resulting from acceptance of H when 6 is true. The
risk which one runs by using a test ¢, when 0 ¢ 2 — w is the true parameter
value is given by the expected loss R,(6) = W(6) Es[l — ¢(X)]. When a uni-
formly most powerful test exists for the hypothesis in question, this test also
minimizes the expected loss uniformly for 6 in @ — w. In the contrary case one
may again restrict the class of tests in some way, so that within the restricted
class there exists a uniformly most powerful test, and hence a test that uni-
formly minimizes the expected loss. Alternatively we may again consider some
optlmum property of the risk function R,(6) as a whole. We shall here consider
the minimax principle introduced by Wald, and seek a test, which, subject to
Ew(X) < «for all 0 ¢ v, minimizes

fuP“W(G) Bl — o(X)],
the maximum risk.

If one introduces losses also for the other type of error it is easy to see that
for a suitably chosen loss function the definition of minimax expected loss coin-
cides with that of stringency. It is therefore not surprising that the methods
of the previous section can be extended to cover the problems considered in
the present one. (They are actually much more general, and may be applied
also, for example, to the problem of point estimation, and in fact to the general
decision problem).

From the lemma of Hunt and Stein stated in the previous section we im-
mediately obtain the following extension of Theorem 8.1.

TrEOREM 9.1. If G is a group of transformations leaving the hypothesis and
the class of alternatives invariant, if G can be factored by normal subgroups into
factors of types (1)—(v), and if the loss function W(0) is invariant under G, then
there exists a test ¢ invariant under G and minimizing

0.1 sup W(9) il — o))

It follows that when a uniformly most powerful invariant test exists, this
test has the property of minimizing the maximum expected loss with respect to
any invariant loss function. Thus Student’s test, for example, minimizes the
maximum risk for any loss function that depends only on | £ |/o.

Clearly the second method mentioned in section 8 can be extended in an
analogous manner if in Theorem 8.2 one replaces the sets Q; by sets over which
W (8) is constant.
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Again it may happen that the method of invariance does not reduce the prob-
lem sufficiently far but that the solution may be completed by other considera-
tions. Let us once more consider the hypothesis H: ¢ = 1 of the previous section,
and let us suppose that the loss function has the necessary invariance property;
so that it is a function only of ¢ but not of the unknown mean. It follows from
Theorem 9.1 that there exists a test minimizing the maximum risk, which is a
function only of ¥ = 2(X; — X)° From [6] it is easily seen that a test ¢, .k,
which rejects when ¥ < k; or > k., has the desired property if its size is « and
if in addition
9.2) sup W) E.[1 — o(Y)] = sup W(o)E,[1 — o(Y)].

It follows that depending on the choice of W (c) the solution may be any member
of the one-parameter family of tests ¢, .+, of size a.

Under the conditions of Theorem 9.1, when a uniformly most powerful in-
variant test exists, this also maximizes the average power for a large class of
weight functions. If there exists a common finite invariant measure over the
sets Qs in the sense indicated in section 8, the uniformly most powerful invariant
test will maximize the average power with this measure as weight function, over
Q; for all 8. It follows that it maximizes the average power over @ — w with
respect to any weight function for which the conditional distribution over each
Q; is the above invariant measure. If the invariant measure over the Q;’s is not
finite one can obtain analogous results with respect to a sequence of weight func-
tions invariant in the limit. The results indicated here are much weaker than
those obtained for the general linear univariate hypothesis by Wald [23] and
Hsu [4] under the restriction to similar regions. However their results are no,
longer valid when this restriction is omitted.

10. Applications to sequential analysis. So far we have restricted considera-
tion to the case that the hypothesis is to be tested on the basis of a preassigned
experiment. However, frequently there is available for this purpose a large class
of experiments, and the selection of an optimum experiment out of this class is
part of the problem. We shall consider here only the following situation, which
has recently been studied extensively (see Wald [28, 29]). There is given a se-
quence of random variables X;, X;, - - - whose joint distribution is known to
belong to some family § = {Ps}, 0 € @; the hypothesis specifies some subfamily:
0 € w. The X’s are observed one by one, and the decision, whether or not to con-
tinue experimentation at any given stage, is allowed to depend on the observa-
tions taken up to that point. Thus the number n of observations that will be
taken is a random variable whose distribution depends on 4. Usually, by an
appropriate choice of stopping rule, there may be effected a considerable saving
in the expectation of the number of observations necessary to achieve a given
discrimination between hypothesis and alternatives. The problem is to deter-
mine the stopping rule and test that minimizes this expectation.

As we have seen in the previous sections the principal methods for obtaining
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optimum tests consist in reducing the problem to that of testing a simple hy-
pothesis against a simple alternative. This basic problem was solved in the non-
sequential case by Neyman and Pearson (Theorem 3.1). The solution of the
much more difficult corresponding sequential problem was obtained for a large
class of cases by Wald and Wolfowitz [31] in the following

THEOREM 10.1. Let X;, X,, --- be tdentically and independently distributed.
It is desired to test the hypothesis that the common probability density of the X’s is
f(x) against the alternative that it s g(x). Given two numbers 0 < a < 8 < 1, there
exists a test which, subject to the condition

P (rejection | f) < «
P (rejection | g) > 8,

minimizes simultaneously E;(n) and E,(n), the expected number of observations
computed for the distributions f and g. This test is given in terms of two numbers
A and B by the following rule. After m observations have been taken,

(10.1)

g(@) - - g(wm)
f@@) -+ f(zm)

g(xl) e g(xm)
@) fam) <~ B

g(@) - - g(Tm)
S Jwy - flam) <

Here A and B are determined so that condition (10.1) holds with the inequality
signs replaced by equality.

So as to be able to treat the various problems considered non-sequentially in
the previous sections one would have to extend this theorem at least to the case
that the variakles X;, X,, - - - form a set of equivalent variables in the sense
of de Finetti [1]. Instead, we shall here restrict ourselves to a few problems that
can be solved on the basis of Theorem 10.1. All of the tests discussed below were
derived from various points of view and some of their properties were discussed
by Girshick in his important “Contributions to the theory of sequential analy-
sis” Annals of Math. Stat., vol. 17 (1946) pp. 123-143 and 282-298, and by Wald
in his basic book on the subject [28].

It is convenient here to modify slightly the formulation of the problem of
hypothesis testing. Let the parameter space @ be divided into three sets, the
set wo specified by the hypothesis, the class of alternatives w; , and a region of
indifference @ — wy — w; where we do not much care whether the hypothesis is
accepted or rejected (see [28]). Let us denote the sequential random variable
(X1, +-+, X,) by X. Then we wish to determine a sequential test ¢, which,
subject to

reject if > A4,
accept if

take another observation if B

Eupo(X) < afor 6 e wp

(10:2)
Ewp(X) > Bfor 0 € w1,
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minimizesosup Es(n). (Actually, this is a rather artificial formulation. The
ewotwy

natural requirement is the minimization of sup Eys(n) but this is a much more
0eQ

difficult problem.) The reduction to the problem of testing a simple hypothesis
against a simple alternative is achieved by the following obvious extension of
Theorem 8.3. ‘

THEOREM 10.2. Let No, M be distributions over wy , w; respectively, and let ¢ be
a test, which subject to

[ Buoda(0) < @
(10.3) -
[ Ewian) > 8,

minimizes ‘B}'l)l.'lb) f Ey(n) dN:(6). Then if o satisfies (10.2) and

(10.4) Ey(n) < ‘sg;l), f Ey(n) dr:(0) for all 0 € wy + w;,

© minimizes sn:p Ey(n) subject to (10.2).
wlTwsy

As in section 3 we can make certain trivial applications to problems concerning
a single real parameter such as testing the hypothesis H: p < p, against the
alternatives p > p1 (ps < p1), where p is the probability of success in a binomial
sequence of trials. In this example condition (10.2) of Theorem 10.2 obviously
is satisfied when Ao and A, assign probability 1 to p, and p, respectively. Hence
the probability ratio test for testing p = p, against p = p, has the desired prop-
erties, whenever (10.4) holds, that is, whenever E,(n) attains its maximum
between p, and p; .

The following is another example that may be solved in this manner. Let
X, X, -+ ; Y1, Y2, --- be independently normally distributed, all with
unit variance and means E(X;) = £, E(Y;) = 1. In order to test the hypothesis
H:& > 1y against the alternatives n — & > & where § > 0 is given, a pair (X, , ¥;)
is observed. If after this observation experimentation continues another pair
(X, Y,) is observed, etc. In this case we may take for A\s, \; the distributions

that assign probability 1 to the parameter points (¢, 9) = (0, 0) and(—g, %)
respectively. Then the probability ratio after m observations is given by

m 2 m 2
o[- 150+ 156D
(10.5) i ey ¢ = g MOHIZYi~2zi)

Since the distribution of ¥ — X depends only on 7 — &, it is easily seen that
congdition (10.2) is satisfied.

Some further results can be obtained through extension to the sequential case
of Theorems 8.1 and 9.1.
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TreorEM 10.3. Suppose that G is of the type described in Theorem 9.1,let Y =
f(X1,X,, -+ ) be maximal invariant under G, let v(6) be maxrimal invariant
under G, and let the set of values of v(6) corresponding to wy and w, be & and &, re-
spectively. If among all tests of & against &, based on Y, the test o minimizes sup -

v(0) edo+d1
Es(n) subject to
Eop(Y) < aif v(0)emn
Ew(Y) = B if v(0)ean ,
then ¢ also minimizes sup Ey(n) among all tests based on the X’s and which satisfy

wotwy
(10.2).

As an example consider the problem of testing the hypothesis ¢ < 09 against
the alternatives ¢ > o1 (¢s < ¢1) when the X’s are identically, independently
normally distributed with unknown mean and variance. Since the problem re-
mains invariant under a common translation of the X’s we can take for Y of
the theorem ¥ = (X, — X;, X; — X;, - -- ). Equivalently we may take as our
new sequence of variables (Y;, Y,, --- ) where

(10.7) Y, = kX —% + X .

Then Y,;,7Y,, - - - are independently normally distributed with zero mean and
the same variance as the X’s. Hence the problem reduces to a type which we have
already considered. The optimum test is based on

LRI }fl—l""'l'er»+1)2

‘Z_; Y: = Z} (X e .

It may be worth pointing out that Theorems 3.2, 8.3, 10.2 all are special
cases of simple results in the general theory of statistical decision functions, of
which the following is the prototype. (For a detailed treatment of this theory
see, for example, [30]). Let {Ps}, 0¢Q, be the family of pessible distributions of
a random variable X, and let {6} be a family of decision functions. The loss
resulting from the use of 3(x) when P, is the true distribution is W[6, é(z)] and
the risk function associated with 6 is R;(8) = EsW16, §(X)]. Let X be a probability

measure over Q, and let 5, be a decision function that minimizes f R5(6) d\(6).

Then if M is such that
(10.8) Ro(0) < f Ray(8) d\(¢) for all 6 € Q,

(10.6)

&\ minimizes snolp R4(6).

Proor. Let §* be any other decision function. Then
sup Ry (0) < [ Ru@ 2® = [ R 2O < sup RO,

In an analogous manner one can give an extension of Theorems 8.1, 9.1, 10.3.
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11. Two sided tests considered as 3-decision problems. In a number of
important special problems the hypothesis specifies the value of a real valued
parameter or states that this parameter lies in a certain interval, and it is desired
to test this hypothesis against the obvious two-sided class of alternatives. It
seems that in nearly any problem of this kind that would arise in practice one
would want to decide when rejecting the hypothesis, whether the true parameter
value lies below or above the hypothetical ones. If for example one rejects the
hypothesis that the means of two normal populations are equal, one usually
wants to decide which of the two is larger. It would therefore seem most natural
to formulate such problems as 3-decision problems.

Problems of this kind, as all problems of hypothesis testing, naturally are
special cases of the general decision problem formulated by Wald. We shall here
consider the case that upper bounds are given for the probabilities of certain
types of errors and thereby obtain a formulation, which is closely analogous to
the classical formulation of hypothesis testing discussed in this paper, and which
will allow immediate application of a large portion of the theory discussed here.

Consider the case that Q is partitioned into 3 parts, w, w; , w2 where in a certain
sense w lies between w; and w;, . We wish to test the hypothesis H: § ew. When we
reject the hypothesis, we shall reach either decision D, that 6 ew; or decision D,
that 6 ew, . Correspondingly we prescribe two positive numbers oy, a2 and impose
the restriction that

Py(Dy) < ayif lew + w,
Ps(D;) < azif Qew + ;.
Subject to this condition it is desired to maximize
Py(D,) for 0 ew,
Py(Dy) for 6 ews, .
A test will now consist of two non-negative functions ¢, and ¢, satisfying
(11.3) #1(z) + ¢a(x) < 1,

with the convention that when X = z the decision D; will be taken with prob-
ability ¢i(z) (¢ = 1, 2).

There is no difficulty concerning the extension of the notions of invariance
or sufficient statistic, in fact these notions obviously apply to the general deci-
sion problem. The notion of unbiasedness is extended in the obvious-way by the
condition

(11.1)

(11.2)

Py(Dy) > a; for 0 ew

(11.4)
Po(Dz) 2 al fOl' 6 €W .

One then obtains the following
THEOREM 11.1. Suppose that for testing the hypothesis Hy: 0ew + we against
the alternatives 0 ew, at level of significance a, , the test ¢, among all unbiased tests
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t8 uniformly most powerful in w + w, and uniformly least powerful in wy , and that
&2 has the analogous property for testing H, : 0ew + w, against 0 ew, at significance
level oy . If $1(x) + ¢o(x) < 1 for all z, then among all procedures satisfying (11.1)
and (11.4), the procedure (¢1 , ¢o) uniformly mazimizes the probability of a correct
decision. (If the tests 41, ¢: take on only the values 0 and 1, the condition &i(z) +
#2(x) = 1 states that the rejection region of each of the two hypotheses is con-
tained in the acceptance region of the other.)

As an example consider the case that X, , - - - , X» are independently, nor-
mally distributed with common mean # and variance o*. Suppose we wish to
test the hypothesis that ¢y < ¢ < 0, where ¢, may equal o3 . Then it follows from
Theorem 11.1 that among all unbiased procedures of level (o , az), there exists
one that maximizes the probability of a correct decision uniformly in £, 0.
This is the procedure under which decision D, or D, is taken as Z(z; — %) < k,
or = k» and the hypothesis is accepted otherwise. Here the k’s are determined by

PE@i— 22 S k|o) = a
PEZ@i— 222 ko) = .
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