THE DISTRIBUTION OF THE NUMBER OF EXCEEDANCES!

By E. J. GumBEL AND H. VON SCHELLING
New York and Naval Medical Research Laboratory, New London, Connecticut

0. The problem. We study the probability that the mth observation in a
sample of size n taken from an unknown distribution of a continuous variate
will be exceeded z times in N future trials, and calculate the averages, the
moments, and the cumulative probability function of the number of exceedances.
This problem leads to the hypergeometric series. Our starting point is a special
case of a distribution studied by Wilks [3] who considered several order statistics
whereas we consider only one. His tolerance limits are special cases of our
cumulative probability function. Thus the present paper is, at the same time, a
specialization and a generalization of the work done by Wilks.

1. Distribution. From a continuous variate § an alternative is constructed
by choosing the mth among n observations &én(m = 1, 2, - -+, n). The rank m
is counted from the top, which means that m = 1 (m = =) stands for the largest
(smallest) observation. The observation ¢ is thus the mth largest value. We
ask: In how many cases x will the past mth observation be equalled or exceeded
in N future trials taken from the same population? For the sake of simplicity,
z is called the number of exceedances.

If the initial probability F (¢,) = F. for a value less than £, is known, the
alternative probability for exceeding £, is 1 — F.. , and Bernoulli’s theorem gives
the probability

(L.1) wi(Fm, N,z) = (Z) (1 = Fu)'Fu™

that  among N future trials will exceed £, . However, as a rule the probability
F .. is unknown. The only data known are the n past observations. To eliminate
the probability F.,, we introduce the distribution »(F,) of the frequency F.
of the mth largest among n values

(1.2) v(n, m, F) dF,, = (:‘n) mFE ™1 — Fp)" " dF,,,
consider F,, as a variate, and integrate (1.1) over all values of this variate. Thus

F., is replaced by a function of n and m.
The convolution of (1.1) and (1.2) leads to the distribution w(n, m, N, x) of

! Opinions or conclusions contained in this paper are those of the authors. They are
not to be construed as necessarily reflecting the views or endorsement of the Navy De-
partment.
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the number of exceedances over the mith largest among n observations in N

future trials
<n) (N)
m
m z

wrn(¥Enoly

This probability depends upon the parameters n, m, and N, but not upon the
unknown probability F,, . Therefore it is distribution-free. If we are interested
in the dependence of w(n, m, N, z) on z only we simply write w(z). The conditions
for the positive integers m and z, and for the probability w(x) are

N

(1.3 1=m=n, O0=Zz=N; Dwkx)=1.
0

(1.3) w(n, m, N, z) =

The distribution (1.3) possesses the following symmetry
1.4) w(n, m,N,z) = win,n —m+ 1, N, N — z)

which reads: The probability that the past mth value from above will be exceeded
x times in N new trials is equal to the probability that the past mth value from below
will be exceeded N — x times.

The nN probabilities w(n, m, N, x) are linked by several recurrence formulas
which follow easily from the usual combinatorial rules. For fixed m, the probabil-
ity for £ + 1 is obtained from the probability for = by

— N — z)(m + z)
w5 w(n,m, N,z + 1) = w(n, m, N, ) NFn—m-2&FD

=wn,n—m+ 1, N,N — 2).

In the same way, the probabilities w(n, m, N, z + 1), w(n, m + 1, N, z) and
w(n, z, N, m) are easily obtained from the probabilities w(n, m, N, ). The dis-
tribution (1.3) has many aspects since, besides the number of exceedances x,
also the rank m and the number of future trials N may be considered as variates.

Form = 1 and m = n, the distribution of the number of exceedances over the
largest value diminishes with x, and the distribution of the number of exceedances
over the smallest value increases with . For z = 0, and m = 1, we obtain from
(1.3)

(1.6) w(n, 1, N, 0) = = w(n, n, N, N).

"
N+4+n
For x = 0, m = n, the probability that the smallest observation will never be
exceeded, equal to the probability that the largest value will always be ex-
ceeded, is very small, even for moderate sample sizes.
If » is odd, then m = (n + 1)/2 corresponds to the median of the initial vari-
able ¢ and the symmetry relation (1.4) becomes

(L.7) w(n, (n + 1)/2,N,z) = w(n, (n + 1)/2, N, N — 2).
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It is equally probable that the median of the n past observations is surpassed
z or N — z times in N future trials.

2. The two asymptotic distributions. If both » and N are large, m may increase
with n such that the quotient m/n remains constant, and the mth values remain
near the median. Or, m remains constant such that m << n, and the mth values
are extremes.

In the first case, let n = N = 2k — 1, where k is large. Then m = k is the
rank of the median of the initial distribution. As shown in (1.7), the distribution
of the number of exceedances over the initial median is symmetrical. To obtain
the asymptotic distribution we reduce x by writing

(2.1) =k+ vk
where z remains in a finite interval. The same reduction may be applied to mth

values in the neighborhood of the initial median. The distribution of the number
of exceedances over the initial median is, from (1.3) and (2.1),

(s i)
w(k — 1,k 2% — 1,2) = const - T 2VE

-3
<2k + 2k — 1)

Consider only the factors involving the variate z, then the right side becomes, by
Stirling’s formula,

2k + 2k — DW(2%k — 2k — 2)'

(k + 2vVE)(k — 2k — 1)!
(2lc + 2/k) %+eVE (2k — z\f]”‘"\/_ e VitV
(k + z\/—)kﬂ\/k (k _ z\/‘)k—;\/“ e—*Vk+z:/k

Combination of the factors with the same powers leads to

4k — k™ ((2k + 2vE) (k — NB)W
(& — k2)* \(©2k — zvk) (& + 2k)

63 (Ao
= 6 siaee )

Since k and \/k are large, and z is small, all factors lead to .xponential functions

whence
22 5 22 zz . . 22
exp[—-o— + 2 +2—+§ -z — z] =exp[—§]
and finally,
(2.2) lim w(2k — 1,k 2k — 1,z) = const ¢,

Km=c0
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The number of exceedances over the initial median, m = k, in a large sample of
stze 2k — 14n 2k — 1 future trials is normally distributed with mean, median,
mode, and variance equal to k. Therefore the probabilities (2.2) may be called
the distribution of normal exceedances.

In the second case where N and n are large, and m and z are small, a distribu-
tion analogous to the Poisson distribution will be obtained. To indicate that
N and n are large, they are written N and n. The probability

'w(nme)=(x+m_l)!@!]X!(N+n—x—m)!
n, m, &V, (m — Dizl(n —m)! NV — )t (N + n)!

obtained from (1.3) becomes, by use of the Stirling formula,

_ mN:
o= (41 )

=wm,n—m+ 1L, NN —2).

(2.3)

If n = N, the preceding formula becomes

r+m—1

(2.4) w(n, m, n, x) = ( N )(%)"‘“ =w(n,n—m+ 1,nn— x.

This probability that the mth largest (or smallest) value will be exceeded  times

(or n — z times) in n-future trials is independent of . Since m is small compared

to m, the probabilities (2.4) may be called the distribution of rare exceedances.
For z = 0, we obtain the probability

w(n, m,n,0) = (H" = wln, 2 —m+1,n,n)
that the largest (or smallest) mth extreme value is never (or always) exceeded.
For m = 1,and n = N, the probability
(2.5) w(n, 1,n,2) = 3 = wn,n,n,n— 2)
that the largest (or smallest) value is exceeded x times (or » — z times) is a
geometric series.

To obtain the moments of the distribution of rare exceedances (2.4) we con-
struct its generating function

o= E( )

‘

From the well known expression for the negative binomial follows

(2.6) G.() = @ <1 - g)dm

whence, by the usual procedure
2.7 Z = m.

The mean number of exceedances over the mth value from above in the dis-

.
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tribution of rare exceedances is m itself. The second derivative of (2.6) fort = 0

leads to the variance
(2.8) o = 2m

which is the double of the variance in the Poisson distribution. This difference
is easily explained: If we apply the Poisson law to the exceedances, we have to
know the mean number of exceedances. In our case we only know one observed
number of exceedances. Consequently the variance must be larger than in the

Poisson case.

GrarH 1

The disiribution of rare exceedances.
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The variance for the distribution (2.2) of the normal exceedances was
(N + 1)/2, whereas the variance (2.8) for the distribution of rare exceedances,

2m, is much smaller since m is small compared to N. This interesting relation
will be generalized in paragraph 3.

For m increasing, the distributions (2.4) spread as shown in graph 1. The dis-

tributions have two modes
(2.9) ZTr=m—2;%=m—1

except for m = 1, where the probability diminishes with z. The distributions
(2.4) are similar to the Poisson distribution for integer m. However, for this
distribution the modes are m — 1 and m.
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The similarity between the two distributions may also be seen from their
behavior for large m. In this case, the Poisson distribution for the standardized
variate y = (z — m)/o converges toward a normal distribution. The same
holds for the distribution of rare exceedances. For the proof consider the standard-
ized variate

(2.10) y = (x — m)/\2m.
Its moment generating function Gy(f) becomes, from (2.6),
G,,(t) = (2etl\/2_»; — gtt/Vam)™™

The usual development leads to the second member
2t 22 2t 442 -
(2+ Vo +im =~ om0
_ _ tz —a2 )—m
= (1 % + 0(m ) .

32), we finally obtain

If we neglect the factors O(m™
(2.11) G,(t) = "

which is the normal generating function. Thus the distribution of rare exceed-
ances converges toward normalcy in the same way as the Poisson distribution.

3. Moments. We return to the general distribution (1.3). For the calculation
of the moments, the hypergeometric series F(a, 8, v, 1) defined by

ale+ 1) BB+ 1
12 y(vy+1)

is used. The z + 1st member of this series is

afa+1)---(a+z—-DpBE+1 - ---B+z—1)
z! vr+1) - (v+z-—1°

On the other hand, the x + 1st member of the distribution w(x) may be written,
from (1.3), after changing the signs,

a

3.1) Fla,B8,7v,1) =1+ i + .-

g+
Y

32) f(x) =

n
w(z) = (m) m(m + 1) - '(m +z— 1)_.
(33) (N - n) i

(=N)(-N+1):---(=N+=z—-1)
m—n—-—Nm—-n—-—N+1)---m—n—N+z—1)"

This is the general member (3.2) of the hypergeometric series, if we write

(3.4) a=m;8=—N;y=m —n — N.
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Therefore the probability w(n, m, N, z) is the 4+ 1st member in the development
of
n!I(N + n — m)!
(N + n)!(n — m)!
Since the sum of the probabilities w(z) must be unity, we obtain
N+n! @—m)!
nl (N+n—m)!’

This relation will be used for the calculation of the factorial moments Zx; of
order k& which are, from (3.3.),

F(m, —N,m —n — N, 1).

(3.5) Fm,—N,m —n — N, 1) =

N4 n—m ¥
T = (n — m)l(N-}-n)!Zz:‘

NN—-1)---N—z+Umm+1) ---(m+z—1)
z—kKHWN+n—mN+n—m-—1)--- (N+n—m—z+ 1)

The first member in the sum is

NN—-D---N—k+Dmm+1) ---m+k+1
OON+n—mOWN+n—m-—1)--- (N+n—m—k+1)

The second member is

(3.6)

38.7) (1) =

(N — kB)(m + k)
TN +n—m—Fk

Generally, each successive member is obtained from the preceding one by the
same rules as the successive members of the hypergeometric series (3.1). Con-
sequently, from (3.6),

ni(V + n — m)! (N = K)m + B)
(n-—m)!(N—-}—n)!‘p(l)(1 + 1IN +n—m — k) + )

The sum in the brackets is the hypergeometric series
Fm+k —(N —k),(m —n— N4+ k), 1).

If we replace, in (3.5), mby m + k, N by N — k, n by n + k,we obtain for the
sum in (3.8)

Fm+ %k — N—k),m—n—N+£k1)
(3.9) _ (N + n)i(n — m)!
T+ kBN Fn—m— k)

Introduction of (3.9) and (3.7) into (3.8) leads to the factorial momenfs

mm+1) -+ m+k—DNN-—-1) ---(N—k+1)
(n+1)n+2) - (n+ k)

e(2) = o(1)

(3.8) Ty =

(3.10) Ty =



254 E. J. GUMBEL AND H. VON SCHELLING

and to the recurrent relation

_m+E—-DWN—-k+ 1 _
- n+k Lo

If n and N are both of the same order of magnitude, and large compared to k,
the expression (3.10) simplifies to

(310/) Tk]

(3.10) Ty = mim + 1) --- (m + k — 1).
GRAPH 2
Averages of numbers o exceedances.
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For k = 1 we obtain the mean number of exceedances Z., over the mth largest
value in N future trials

m
N i

This expression is identical with the classical formula Z = N(1 — F,) in the
Bernoulli distribution (1.1), since the mean of 1 — F,, obtained from (1.2) is
m/(n + 1). In both distributions the means need not be integers. The mean
number of exceedances over the smallest value is n times the mean number of
exceedances over the largest value. If N = n 4+ 1, we have Z,, = m, and the same
holds if n and N are large. If n is odd, and m = (n 4+ 1)/2, the mean number of
exceedances over the median of n observations is N /2. The means %, are traced
against m in Graph 2 forn = N = 9,andn = N = 10.

Tm =

(3.11)

Averages of number of exceedances.
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The mean number ,Z of exceedances over the mth value from below is related
to &, by
(3.12) Fm+ mi = N.

The variances o5 and n.o° of the number of exceedances over the mth values
from above and below become, from (3.10),

< _ 2 _ mN (m+ DN -1 mN)
r x n+1 (1 + n+ 2 n+4+1)°
The choice of a common denominator leads, after trivial calculations, to

2 mNom—m+1DN+n+1)
(3.13) Om = o ¥ Dn + 9 = o .
The variances increase with N and diminish strongly with increasing n. The
variance 1s maximum for m = (n + 1)/2, 1.e. for the median observation where
it becomes

NWN+n+1)
4 (m+2

The variances of the number of exceedances over the largest and the smallest
value are

(3.13") A= D) =

The quotient of the variances of the median and of the extremes is

(3.13") 02()1.+1)/2 =

ANWN +n41)

10 .

(3.14) Tovn _ (D' ol

o1 4n 10’2

Consequently the variance of the median is about n/4 times larger than the
variance of the extremes. In other words, the extremes are more reliable than the
median, and this quality increases with the sample size. This is a generalization
of the relation obtained in paragraph 2. Such a behavior seems singular. How-
ever, it also holds for the uniform distribution, and for the distribution (1.2)
of the frequencies [1].

In Bernoulli’s case, the variance o is, after replacing 1 — F,, by m/(n + 1),

_y_m n—m+ 1)
n+1) (@m+1) °

2
(]
whence, from (3.13),

ol =02N+n+1 > ol

m B ——n + 2 B-
The variance in our case is larger than in Bernoulli’s case, since we do not assume
the knowledge of the probability F.. which is required for the Bernoulli distribu-
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tion. For N = n + 3, the variance becomes twice the variance of the Bernoulli
distribution. This is a generalization of formula (2.8).

4. The mode and the median. We ask for the most probable number  of
exceedances over the previous mth largest among 7 observations in N future
trials. If a mode exists, it must be an integer. Since the distribution w(z) decreases
(or increases) with = form = 1 (or m = n) we only consider

4.1) 2<m<n-—1.
The mode is obtained from the inequalities

(4.2) w(n, m, N,z — 1) < w(n, m, N, z) = w(n, m, N,z + 1)
which lead, from (1.5) to

N+1_
n—1

1<ism-pnp¥+tl
n—1

(4.3) (m — 1)

The length of the interval is unity, as for the Bernoulli distribution.
There are several cases where two modes exist.
a) Let the number of future trials N be such that

(44) N=kn—-1) —1
where & is a positive integer. Then the modes are, from (4.3)
4.5) gy =k(im — 1) — 1; % = k(m — 1).

b) The modes (4.5) also hold if n and N are large compared to unity, and if
N = k'n, where I’ is again an integer.

¢) If n is odd, the median of the initial variate has the rank m = (n 4 1)/2.
If, at the same time, N is odd, there are two modes, namely

(4.6) Zy =N - 1)/2;F = (N + 1)/2.

In the case N = n, the two modes Zq) = m — 1, and %@ = m differ by unity
from the modes valid in the two previous cases.

In the case n = N, and m # (n 4 1)/2, only one mode exists. To find its
location, consider first the case that n = N is even, and m < n/2. Then the
upper limit in (4.3) is

[m—1]+n_f_l(m—1) §,Im—1]+1—771__1<[m].

Since the interval has unit length, the mode is £ = m — 1. If m > (n 4+ 1)/2,
the lower limit is

[m — 2] + n_z;_“l (m — 1) > [m — 1].

The case that n = N is odd is treated in the same way, and leads to the follow-
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ing result: The most probable numbers of exceedances over the mth value in
N = n future trials are

F=m— 1form = n/2;% =mform > (n/2) + 1,
if n = N is even,
(4.7)
E=m—1lform 2 (n+ 1)/2;Z=mform = (n + 1)/2,
if n = N is odd.
We now consider the median. If the probabilities w(z) are summed up from
@ = 0 onward, there may exist an integer #, such that the probability for at
most &, exceedances is 1. This is the median number of exceedances. Such a
number need not exist. Assume, for example, N < n, then the probability
w(n, 1, N, 0) alone (see (1.6)) surpasses 3, and the number of exceedances over
the largest and the smallest value do not possess a median. If the median #,

exists, it follows from the symmetry (1.4) that N — #,, — 1 is the median of the
number of exceedances over the mth value from below. The relation

(4.8) Em+ 8 =N—1
differs from the corresponding relation (3.12) for the mean. Insome special cases,
the median canbe obtained immediately. Forz = 0,m = 1, n = N, formula (1.6)
leads to

w(n’ 1’ n7 0) = % = w(n’ n7 n7 n)'
The probability that the largest (or smallest) of n past observations will never (or
always) be exceeded in n future trials s equal to 3. If n and N are odd, and m =
(n + 1)/2, the summation of equation (1.7) yields, with the help of (1.3'),

?w(z) = Ni_ w() =1 — iw@)’

Now the median number of exceedances % is such that the two sums on the right
sides are equal to 3. Consequently the median number of exceedances in this
case ism — 1.

We claim that

(4.9) Em=m—1

for all m, provided that » = N. For the proof, consider the probability
W (n, m, N, x) that the mth largest value is exceeded at most x times in N fu-
ture trials. This is the sum of the first # + 1 members w(z). Let F.(a, 8, v, 1)
be the sum of the first v members of the hypergeometric series (3.1). Then the
substitutions (3.4) and v = = + 1 lead to

(4.10) Wn, m, N, z) = "/ F.yi(my =N, m — n — N, 1).
(N +n
m
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For the sums of the hypergeometric series F(a, 83, v, 1) the following recurrence
formula [2] is used.

(v—B—a)y—B—a+1)--(yv—8-1)
v—a)y—a+1) - (v—1)

BB+ 1) ---B+v—1)
vy—a)y—a+1) - (v—a+v—1)

Fu(vy7_6—ay7_a+v’1)'
The substitutions used in (3.4), and v = z + 1 lead to

F‘v(ar B; Y 1)

(4.11) =1~

(=n)(=n4+1 - (=n+m—1) —N,m—n-—
A =M (en— N+ D) - (mn =Nt m =l Nm=n-h, K

(=N)(-N+1) -+ (=N + )
(—n—N)(—n—-N+1)---(—=n— N +12x)

Fulx4+ 1, —n, —n — N + 2 + 1, 1).

=1 —

This equation may be written from (4.10)

(1)
(4.12) Wm,mN,z) =1— Nl Fnx+1,—n,—n — N+ 2+ 1,1).

(N + n)
r+1
For x = m — 1, and N = n, the equation becomes

()

Wmn,mmnm— 1) =1— —) Fn(m, —n, —2n 4+ m, 1).

(Zn
m

From (4.10) it follows that the second factor on the right side is equal to the

left side
n
m

™)

m
Consequently

(4.13) Wm,m,n,m — 1) = %.

Wn,m,nm— 1) = Fn(m, —n, —2n + m, 1).

Ifn = N, the median number I, of exceedances over the mih largest value s m — 1,
as stated previously. The means, modes, and medians obtained {rom the exact
formulae (3.11), (4.7) and (4.9) are traced in graph (2) forn = N = 9, and
n =N = 10.
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b. Probabilities of at least one exceedance. If we sum up the probabilities
w(z) from zero up to a certain x (or from a certain z up to N), we obtain the
probabilities W(x) (or P(z)) for at most (or at least) z exceedances over the
mth past value in N future trials

z N

(5.1) W) = 2 wz); Pe = 2 w(2)

=0 =z
where
W)+ Plzx — 1) =1;W(x — 1) 4+ P(x) = 1.
The boundary conditions are
wW(0) = w(0); W(N) = 1; P(0) = 1; P(N) = w(N).

From the symmetry (1.4) it follows that the probability for the mth value from
above to be exceeded at most x times is equal to the probability for the mth
value from below to be exceeded at least N — x times.

From (5.1) and (1.3) it follows for m = 1 (and m = n) that the probabilities
for the largest (or smallest) among n observations to be exceeded at most once
in » future trials converges toward 3/4 (or zero), respectively. If » is large, the
probability that the largest value will be exceeded at most z times in n future
trials is, by virtue of (2.5),

(5*2) W(’l, 17 n, il') =1- (%)1 = P(’.% n,n,n — x)
independent of n.

Consider now the probability that the mth largest value will be exceeded at
least once in N future trials

n! (N 4+ n — m)!
(n —m)! (N +n)!
= Wm,n—m-+ 1, NN — 1).

(5.3) Pm,m, N, 1) = 1 —

If N and n are large, and m is small, this expression becomes

n

n+ N

P(@ymrgrl):1_< > =I’V(7_7'771'—7n+1y1£7]_\2—1)
Form = 1and n = N, the probability is 3, independent of the size of n.

The least number of exceedances over the smallest value for given probabili-
ties P, called the tolerance limit, has been derived by S. S. Wilks [3]. A related
problem is the following: How many trials N have to be made in order that there
is a given probability « for the mth largest value to be exceeded at least once? By
virtue of (5.3) we obtain N from

n!(N +n —m)! _
(n —m)\(N +n)!

(5.4)
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For the largest value m = 1, this equation leads to

N 1
(5.5) ;—l_a—l.

Of course, N/n increases with «. If n is large, and m remains small, equation
(5.4) leads, in first approximation, to

(5.6) %’ — -V -1

The quotients N/n as function of a are traced in graph (3). The quotient is
"plotted vertically against 1/(1 — «) plotted horizontally, both in logarithmic
scales. The abscissa shows the probability «. The curve for m = 1 is exact. The
corresponding curves for the penultimate and the two preceding values
(m = 2,3, 4) are obtained from the approximation (5.6). The graph reads in the
following way: The probability that the largest, or second, or third, or fourth
value from above are exceeded at least once in 100n, or 9n, or 3.6n, or 2.2n fu-
ture trials ise = .99. Inversely, in 4n future trials the probability that the larg-
est, or the second, or the third, or fourth extreme value is exceeded at least once
is @ = 0.80, or 0.96, or 0.992, or 0.9984, respectively.
In a similar way wé calculate the probabilities that the largest (and penulti-
mate) among n observations is exceeded at least twice in N future trials. Let
a; be this probability. Then we have for the largest value

1— a = wln,1,N,0) + wln, 1, N, 1)

n N
_n+N(1+n+N—1)'

For n sufficiently large, the expression simplifies to

.7 LI (%’ i 1)2

1_ .
[+ 7} 2\74_1
n

The probability a; as function of N/n is also traced in Graph (3) and designated
by m = 1,z = 2. Finally, for m = 2 the probability a, for the penultimate value
to be exceeded at least twice is obtained for large » by

(5.8) L _ (%+ 1)3.
+1

1— a 3N

n

This probability «. is also traced in Graph 3 and designated by m = 2,z = 2.

If we fix the probabilities a;, the graph shows the number of future. trials cor-

responding to 1 and 2 exceedances over the largest, the penultimate, and the
two preceding observations.
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6. Applications. In 509, of all cases, the largest (or smallest) of n past observa-
tions will not (or always) be exceeded in N = n future trials. The mean number
of exceedances is the mean in the Bernoulli distribution. The variance is largest
for the median, and smallest for the extremes, and this superiority of the extremes
increases with the sample size.

If the previous, and the future sample sizes both are large and equal, the dis-
tribution of the number of exceedances over the median observation is normal
with mean and variance of the order n/2, whereas the distribution of the ex-
ceedances over the mth extremes (the law of rare exceedances), similar to the
Poisson distribution, has the mean m, and the variance 2m, m being small com-
pared to the sample size. Elementary calculations lead to the setting of sample
sizes N corresponding to given probabilities for 1 or 2 exceedances over the past
largest and penultimate observation.

These methods may be of interest for forecasting floods if, instead of the size
of the flood, we are interested only in the frequency. The same procedure may
also be applied to other meteorological phenomena such as droughts, the extreme
temperatures (the killing frost), the largest precipitations, etc., and permits to
forecast the number of cases surpassing a given severity within the next N years.
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