ON CRAIG’S THEOREM

455

Since \(\sigma^2 > \nu^2 \), this is the characteristic function for two variables which are normally distributed. Thus, the simultaneous distribution of \(\xi \) and \(M \) is asymptotically normal. It is of interest to note that, if the pdf \(f(x) \) is symmetric, the correlation coefficient is zero, and \(M \) and \(\xi \) are asymptotically independent. We might also note that \(\phi(t_1, 0) \) is the characteristic function for the mean deviation from the sample median. Thus, the random variable \(M \) is asymptotically normal with asymptotic mean and variance \(\nu' \) and \(\left((m - \theta)^2 + \sigma^2 - \nu^2 \right)/2k \) respectively.

The author wishes to express his appreciation to Professor A. T. Craig for valuable suggestions in the study of this problem.

REFERENCES

NOTE ON THE EXTENSION OF CRAIG’S THEOREM TO NON-CENTRAL VARIATES

By OSMER CARPENTER

Carbide and Carbon Chemical Corporation, Oak Ridge

The following notation is used: \(A, A_1, A_2 \) are real symmetric matrices, \(L \) is an orthogonal matrix, \(\Gamma \) is a diagonal matrix of latent roots, and \(X, Y, M \) and \(U \) are column vectors.

Theorem. Let \(X' = (x_1, \cdots, x_n) \) be a set of normally and independently distributed variates with equal variance \(\sigma^2 \) and means \(M' = (m_1, \cdots, m_n) \). Then, a necessary and sufficient condition that a real symmetric quadratic form \(Q(X) = X'AX \) of rank \(r \) be distributed as \(\chi^2 \), where

\[
p(x^2, r, \lambda^2) = \frac{1}{2} e^{-x^2}(x^2/2)^{(r-2)/2} \frac{e^{-x^2/2}}{\Gamma[(r - 2)/2]},
\]

(1)

\[
\sum_{i=0}^{\infty} \frac{(\lambda^2 x^2/2)^i}{j! \Gamma[(r - 2j)/2]},
\]

is that \(A^2 = A \). If \(Q(X)/\sigma^2 \) is distributed by \(p(x^2, r, \lambda^2) \), then \(\lambda^2 = Q(M)/2\sigma^2 \).

Further, let \(Q_1(X) = X'A_1X \) and \(Q_2(X) = X'A_2X \) be real symmetric quadratic forms of ranks \(r_1 \) and \(r_2 \). Then a necessary and sufficient condition that \(Q_1(X) \) and \(Q_2(X) \) be statistically independent is that \(A_1A_2 = 0 \).

Proof. The theorem is proved by establishing the equivalence and factorization of moment generating functions [4]. The moment generating function of
\(p(x^2, r, \lambda^2) \) is
\[
G(t) = Ee^{t x^2/2} = e^{\lambda^2(1-t)(1-t)^{-\gamma/2}}.
\]

Let \(x_1, \ldots, x_n \) be normally and independently distributed with means \(E(x_i) = m_i \) and common variance \(\sigma^2 \). Without loss of generality, we may take \(\sigma^2 = 1 \), changing to the general case when necessary with the transformation \(x_i = z_i/\sigma \).

Let \(Q(X) = X'AX \) be a real symmetric quadratic form of rank \(r \). Then the moment generating function of \(Q(X) \) is
\[
G_0(t) = Ee^{tQ(X)/2} = (2\pi)^{-n/2} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}(X-M)'(X-M) - X'TAX} \prod_1^n dx_i.
\]
If \(t \) is restricted to values such that \(|t| < |1/\gamma_0| \), where \(\gamma_0 \) is the dominant latent root of \(A \), then \(I - tA \) is positive definite and
\[
G_0(t) = (2\pi)^{-n/2} e^{\frac{1}{2}M'tA(I-tA)^{-1}M}
\]
\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}[X-(I-tA)^{-1}M]'(I-tA)[X-(I-tA)^{-1}M]} \prod_1^n dx_i = e^{\frac{1}{2}M'tA(I-tA)^{-1}M} |I - tA|^{-1}.
\]
If \(L \) is an orthogonal matrix such that
\[
L'AL = \Gamma = \begin{pmatrix}
\gamma_1 & 0 & \cdots & 0 \\
0 & \gamma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \gamma_n
\end{pmatrix},
\]
where the \(\gamma_i \) are the latent roots of \(A \), then the transformation \(M = LU \) gives
\[
G_0(t) = e^{\frac{1}{2}U't\Gamma(I-t\Gamma)^{-1}U} |I - t\Gamma|^{-1}.
\]
A necessary and sufficient condition that \(G_0(t) = G(t) \) is that \(A^2 = A \). If \(A^2 = A \), then all of the latent roots of \(A \) are \(+1 \) or \(0 \), and sufficiency can be established by substituting the appropriate value of each \(\gamma_i \) into equation (5), giving
\[
G_0(t) = e^{\frac{1}{2}U't\Gamma(I-t\Gamma)^{-1}U} |I - t\Gamma|^{-1} = G(t).
\]
Also \(\lambda^2 = \sum_i \gamma_i u_i^2/2 = \frac{1}{2}(U'\Gamma U) = \frac{1}{2}(M'AM) = Q(M)/2 \).

It is apparent from the form of \(G_0(t) \) that a necessary condition for \(G_0(t) = G(t) \) is that \(|I - tA|^{-1} = (1 - t)^{-\gamma/2} \). But it has been proved by Craig [1] that the condition \(A^2 = A \) is necessary, as well as sufficient, for this equality.

Next, let \(Q_1(X) = X'A_1X \) and \(Q_2(X) = X'A_2X \) be real symmetric quadratic forms of ranks \(r_1 \) and \(r_2 \). Then from (4)
\[
G(t_1, t_2) = Ee^{t_1Q_1/2 + t_2Q_2/2}
\]
\[
= e^{\frac{1}{2}M'(t_1A_1 + t_2A_2)'(I-t_1A_1 - t_2A_2)^{-1}M} |I - t_1A_1 - t_2A_2|^{-1},
\]
\(t_1, t_2 \) being restricted to values for which \((I - t_1 A_1 - t_2 A_2)\) is positive definite.

A necessary and sufficient condition that \(G(t_1, t_2) = G_Q(t_1) \cdot G_Q(t_2)\) is \(A_1 A_2 = 0\).

The required equation in the moment generating functions is

\[
G(t_1, t_2) = e^{1M' t_1 A_1 (I - t_1 A_1)^{-1} M} |I - t_1 A_1|^{-1} \\
\cdot e^{1M' t_2 A_2 (I - t_2 A_2)^{-1} M} |I - t_2 A_2|^{-1}.
\]

Assume \(A_1 A_2 = 0\). Then \((I - t_1 A_1 - t_2 A_2) = (I - t_1 A_1)(I - t_2 A_2)\)
and \(|I - t_1 A_1 - t_2 A_2| = |I - t_1 A_1| \cdot |I - t_2 A_2|\). Also

\((t_1 A_1 + t_2 A_2)(I - t_1 A_1 - t_2 A_2)^{-1} = t_1 A_1 (I - t_1 A_1)^{-1} + t_2 A_2 (I - t_2 A_2)^{-1},\)

for using the identity \(tA(I - tA)^{-1} = (I - tA)^{-1} - I,\) this becomes

\((I - t_2 A_2)^{-1}(I - t_1 A_1)^{-1} = (I - t_1 A_1)^{-1} + (I - t_2 A_2)^{-1} - I.\)

Multiplying both sides on the left by \((I - t_2 A_2)\) and on the right by \((I - t_1 A_1)\),
the identity follows. Thus the condition is sufficient.

It is apparent from the form of the moment generating functions that
a necessary condition for \(G(t_1, t_2) = G_Q(t_1) G_Q(t_2)\) is that \(|I - t_1 A_1 - t_2 A_2| =
|I - t_1 A_1| \cdot |I - t_2 A_2|\). However, it has been proved by Hotelling [3] and
Craig [2] that the condition \(A_1 A_2 = 0\) is necessary for this equality.

An extension can be made to correlated variates. Let \(X' = (x_1, \ldots, x_n)\)
be normally distributed with non-singular correlation matrix \(B\) and means
\(M' = (m_1, \ldots, m_n)\). Then there exists a non-singular transformation \(X = TZ,\)
such that the variates \(Z\) are independent and have unit variance. Thus
\(T^{-1} B T^{-1} = I, B = T T'\) and \(Q(X) = X' A' X = Z' T' A T Z\). Applying the theorem
proved above, a necessary and sufficient condition that \(Q(X)\) be distributed as
\(\chi^2\) is that \((T' A T) = T' A B A T T' = T' A T,\) or that \(ABA = A\). As before,
\(\chi^2 = Q(M)/2.\) In the same manner, a necessary and sufficient condition for
independence of \(Q_1(X)\) and \(Q_2(X)\) is that \((T' A_1 T)(T' A_2 T) = T' A_1 B A_2 T = 0,\)
or that \(A_1 B A_2 = 0,\)

REFERENCES

Vol. 15 (1944), page 427.