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1. Summary. This paper is in continuation of the author’s first two papers
[1] and [2]. In this paper a method is described by which it is possible to derive
the distribution of the sum of roots of a certain determinantal equation under the
condition that m = 0. This condition implies, when the results are applied to
canonical correlations, that the numbers of variates in the two sets differ by
unity. The distributions for the sum of roots under this condition have been
obtained for I = 2, 3 and 4 and are given in this paper. This paper also derives
the moments of these distributions.

2. Introduction. The reader should refer to the first two papers of this series
[1] and [2] for detailed explanation of the preliminaries essential for this paper.
The distribution of any root of the determinantal equation, specified by its
rank when the roots are arranged in a descending order of magnitude, was
derived by the author [1]. The distribution of the largest root was expressed as

(1) P.(6; <z)=C{A, mn)Finma(x) = const. 0,,l — 1, ---,1,z;m,n).

3. Method. Putting 8; = p;/n in R(l, m, n) as given in [1] and allowing » to
tend to infinity, the distribution density reduces to

R(, m) = const. ¥ [ (oi — p)e™™ (O <p<pa< -+ <p< ),
<7

where the constant is independent of n, by [2]. If we replace x by z/n in the
right-hand side of (1) and allow » to tend to infinity, then the resulting function
G1.m(z) is independent of » and it can be shown by comparing the two methods
A and B in [2], that

(2> R(ly m)lI dPi = Gl,m(x)-

‘/‘;<pt<pz_1<~-~<p1<:c
This is a constant multiple of
—Zp,
®  o@m = [ 1067 T1 (oi — o) dps
0<pI<pl_1< - <p1<2z i<y
= const. xl+lm+l(l——1)/2 0(1?, m)

Putting p; = zy., we have

4 Iy H (y: — y)e "> Il dy; = const. 6(x, m).

~/.0<1ll<ln._1<"-<111<1 <7
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The left-hand side is proportional to the moment generating function for the
sum of roots when n = 0.
Letyp =1 —0,,9p0=1— 614, -+ ,y1=1— 6 ; then (4) gives

) f 0@ — 6™ I 6: — 6)¢7=*% 11 dp; = const. 8(z, m).
0<0; <1<+ <01<1 1<5

Let m be changed to n and both sides be multiplied by e , then we get

(6) f _ 1@ — 6)" IT (6: — 6,)¢”™ 11d6; = const. & 6(z, n).
0<0;<0; 1<+ <01<1 1<7

The left-hand side of (6) is the moment generating function for the sum of roots
when m = 0.

The method for obtaining the probability distributions is described in detail
for each of the cases I = 2, 3, in the following sections.

It may, however, be added here that the condition m = 0, implies that
| » — ¢ | = 1 in the case of canonical correlations. It also implies, in generalized
analysis of variance, that if we have K samples and measurements are made on p
characters then K — 1 and p should differ by unity. Thus the distribution is
given for 5 samples and 3 characters when l = 3 (p = 3).

4. Distribution of the sum of roots when m = 0.
(a) I = 2. The value of G;,(z) has been given in [2] as

)] Gom(z) = k(2, m) [2 f Wl e du — " e f wre ™ du],
0

0

where K(2, m) = 2°""/T'(2m + 2). Then in the notation just given
o(x, m) = 2 f wWle™ du — g™ e f u"e " du.
o o

Replacing u by au, we get

1
2m+2 2m+1 —2 2m+2 -
oz, m) = 227" / w" e I"du—-:zc””Le”‘/Ju’"e “ du
0 0

x2m+2 ! —27u 2m-+2 x2m+2 e—-z ! —zU m+1
— $2m+3 [2 fl u2m+2 e—2:m du — & fl um+l o du] .
m + 1 o 0
Hence

1
0(x, m) = const. [2 f W™ du — ¢ f u g™ du] ,
0 0
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and according to (6),

f (1 — 6,)"0, — 62)e"2% do, db,
0<fa<b1<1

1 1
9) = const. € [2 f W qy — ° f ute™ du]
0 0

If

1
const. [2 f 1 — w)™ ™ dy — f 1 — w"tte du],
0 0
by replacing » by 1 — u. Or,
1 1
E(&*%) = const. [2 f (1 — w)™ ™ du — f (1 — w™ e du].
0 0

The constant can be evaluated by putting z = 0.

Then let P,(6, + 6: < Z) = const. [F1(Z) + Fi(Z)], where Fy(Z) and Fy(Z) are
cumulative distribution functions given by integrating the density (1 — u)*"** of
2u and (1 — )" of u, respectively. It is easily seen that

RO = [ Q- w™au =il - Q- 2"Ya+2 @<,

Since F1(Z) is to be obtained from the density of 2u, we may substitute » = 2u
and then integrate. Thus

Fi\(Z) = 2 fo ’ (1 —%)M dv/2 = 2[1 — (1 — Z/2"/(2n + 3) (Z < 2).

Hence the result for I = 2 is
P+ 6. < 2) =2(n + 2)[1 — (1 = Z/2)"™"] — @n + 3)[L — (1 — 2)"*™]
0<zZ<,
=2+ 21— (1 —-2/2""—@2n+3) (1<Z<L2).

(b) I = 3. The value of G;,.(z) as given in [2] is changed as
Gs,m(z) = K(3,m) {2 f W™ du f u"e " du — 2 f W™ du
0 0 0
z xm+2 e—z , 1 R
. f u2m+2e—2u du _ [2x2m+3f u2m+‘.e—2zu du _ x2m+3 e——z

o m + 1 o

1 \
. f u" e du:l ?,

o

using (8). K(3, m) is a constant independent of n. Putting zu for » in only the
first two terms of the right-hand side of the above equation, we get
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1 1
Gsm(x) = k(3, m)z*™t® {2 ~/o. W= g f u"e ™ du
0

1 1 -z 1
(10) — 9 f w2 e G f w1 dy — 2¢ f B gy,
0 0 m=+1d
6—23 - pl "
+ p—— ‘/; u e du}.
3m—+6

By integrating by parts we get x as a common factor on the right-hand
side of the above equation. Then according to (5) and (6) we have

f my? 1 (i — y)e ™" I dy; = const. {2(m + 2)
0 <y3<y2<v1<1 1<j

1 1 1
f u2m+3 e—2zu d " f um+l e—xu du + 2(2m + 3)6—2 f u2m+4 e—Zzu du
0 0 0

1 1
— 4(m + 2 f W dy + ¢ f u™ttem du}.
o

0

Puttingyy = 1 — 63,9y, = 1 — 6;,y; = 1 — 6, and, changing m to n and
multiplying with ¢* we get

f o —6)" IT 6: — 67> 11 do;

0 <03<02<0;<1 i<
1 1

@11) = const. {2(n + 2) f £ O g f B E gy,
0 (]

1 1
+ 2(2n + 3) f u2n+4621(l—u) du — 4(n + 2) j u2n+3ezz(l—u) du
0 o

b [ e )
)
Thus we have

P,(01 + 6, + 65 S Z) = const. {Fl(Z) + Fz(Z) + Fa(Z) + F4(Z)},

where Fi(Z), Fo(Z), F3(Z) and F«(Z) are the contributions to the cumulative
distribution by the four terms of the right-hand side of the following equation

1 - 1
E(¢*%) = const. {2(n + 2) f (1 — w3 du‘/o. (1 — "™ du
o

1 1
+ 2(2n + 3) L 1 — w™™Me du — 4(n + 2) fo 1 — w3 du

! _ nt+2 zu }
+‘£ (1 — we™ du },

where const. = [(n 4+ 2)(n 4+ 3)(2n + 5)]. Proceeding according to the method
given in (a) we have

(12) FuZ)=11- Q0 —=2)""l/(n + 3) 0<z<1),
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(13) Fy(Z) = 22n 4 3)[1 — (1 — Z/2)***°|/(2n + 5) 0<z<72),
(14) Fs(Z) = —4(n + 2)[1 — (1 — Z/2)""")/@2n + 4) 0<Z<2).

Let us now consider Fy(Z), which is the contribution of the first term. Let
11 and y., be distributed between 0 and 1 with densities (1 — ,)*"** and (1 — 3.)" "

Yz
Y N Q B
L
R
\ v.
0 S M P A

Fra. 1

respectively, then

@) =20+2 [[ -0 - W™ dydpe,

2nty2<2
where Z goes from 0 to 3.

Let us consider the distribution over the unit square OABC, Fig. 1, then for
Z <1,Z £ 2,and Z < 3; we have to integrate over OLM, OCNP, and OCQRA,
where LM, NP and QR are the three lines given by 2y, + y» < Z according as
Z<L1,Z<2,and Z < 3.
(i) The integration over OLM is given below

Fii2) = 2@n + 2) f [ a—w™a - W™, forz <1,

1ty <2 ‘
or
— 1 . _ 2nt4
Fa@ = 2{ g1 - -z
+ 3 _ Z 3nt6
(15) — A\ - 2" 2 (——2—) [Iz/(a..z)(2’lb + 4, n + 3)

—Ie-nie-o(2n 4+ 4, n + 3)]},
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where

1
A=B@n+4,n+3) = f ¥R - 9" dy
0
and

HE=D) vs +3
Mya-z) = l v — )" dy.

(ii) The integration over OCNP is given below.
(16) F12(Z) = [1 — (1 — Z/2)"")/(n + 2)@2n + 4) — 2”3 — 2)/2]*"*
{B@2n + 4,n + 3) — Me-2y6-22n + 4,n + 3)}/(n + 2) (Z £2).

(iii) In order to integrate over OCQRA, we shall integrate over the unit area
OCBA and subtract from this the value obtained by integrating over QRB.
Thus,

(A7) Fia(2) = 1/ + 2)@n + 4) — 2"7[@ — 2)/2]°™*
B@2n + 4,n + 3)/(n + 2).
Hence the result for I = 3 can be expressed as
P,(6: + 6, + 6: < Z) = const. {F14(Z) + Fx(Z) + Fa(Z) + Fu(2)}
= const. {2(n + 2){[1 — (1 — Z/2)"""]/(n + 2)2n + 4)
=272 12" Ty 0y (20 + 4,1 4 3)
— Te-zya-2@n + 4,n 4+ 3)]/(n + 2)}
+2@n + 31 — (1 — Z/2)""]/@n + 5) — 2[1 — (1 — Z/2)""|
+1 -0 -2/ +3)} 0LZ<LY,
and

= const. {F12(Z) + Fo(Z) 4+ F3(Z) + Fi(1)}

= const. [Z(n + 2)[[1 — (1 — Z/2)"™/(n + 2)(2n + 4)
- 2”*’(3%—2—)3"”[3(2% 4,n+ 3) — Me-zya-n@n + 4,n+ 3)//(n + 2)]

+2@n+ 3L — (I — Z/2)™")/@n + 5) — 21 — (1 — Z/2)"*] + 1/n+3]

(1<7<2),
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and

= const. {F13(Z) + F2(2) + Fs(2) + Fa(1)}
3 — Z)3n+6

= const. {2(n + 2){1/(11 + 2)©@n + 4) — 2" ( -

B@2n + 4,n + 3)/(n + 2)}+ 2@2n +3)/@2n+5) -2+ 1/(n + 3)}

2<2<L3),
where const. = (n + 2)(n + 3)(2n + 5) and A = B(2n + 4, n + 3).
The exact distribution is obtained for I = 4 by the similar method. The final
results are available with the author and are not given here due to lack of space.
The method given in the above sections can be used.to find the distribution
of the sum of roots of a determinantal equation of any order under the condition
m = 0,

6. Moments of the distributions. The moments can be obtained by expanding
the right-hand side of (6) in terms of z and then collecting the coefficients of z.
The moments for I = 2 have been derived here and the method is illustrated
below:

(a) I = 2. Equation (9) gives

1
f H@A — 6,)*(6; — 62)e">% 1 df; = const. {2 f 1 — w1 du
0 <02<01<1 0

1 1 0 t
- f Q — w*te™ du} = const. {2 f a—-wrty (23:?)
0 . 0 t=

t!

! at = ()’ _ ~ (20)' T(t+ D)I'(2n + 3)
_fo @ =™ gT}“conSt'{zg i Ternt it 4

=~z T+ DI(n + 2) | _ 2 [ 2x
- X Th + 1+ 3) }_c°n8t'{2n+3 L+ 3

(20 (22" ]
T o Foents T i@ 5@ T 6

1 2

X
—(n+2)[1+n+3+(n+3)(n+4)

x3
+ (n + 3)(n + 4 (n + 5) + :I}
Thus

2

mF3 2 mTImr D F DT )
z 120(n + 2)(n + 3)(dn + 13) }

ST G Yo Y e YooY e e SR
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Hence
p = 3/(n + 3),

ps = 6(dn + 11)/(n + 3)(n + 4)(2n + 5)
and

s = 30(dn + 13)/(n + 3)(n + 4)(n + 5)@2n + 5).

The moments for I = 3 and 4 can be obtained in a similar way.
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