ON THE RELATIVE EFFICIENCIES OF BAN ESTIMATES!

By Lro Katz
Michigan State College

1. Introduction. J. Neyman [3] defined BAN (best asymptotically normal)
estimates as those functions of observed relative frequencies which i) are con-
sistent, ii) are asymptotically normally distributed, iii) are asymptotically ef-
ficient and iv) possess continuous partial derivatives with respect to each relative
frequency. He suggested the following two problems; first, to determine the
class of estimates which possess the above four properties and second, to investi-
gate this class of estimates to see whether, and under what conditions, the use of
some of them is preferable to the use of others. Neyman’s paper dealt with the
first problem directly and with the second obliquely. With respect to the first
problem, he showed that two types of x'-minimum estimates belong to the
class of BAN estimates as do, obviously, maximum likelihood (ML) estimates.
On the second problem, the x*-minimum estimates may be more easily computed
than the corresponding ML estimates in many cases, the ease of computation
being especially pronounced for the modified x* with observed, rather than ex-
pected, relative frequencies in the denominators. The present paper contains
some additional information regarding the relative merits of these estimates.

For simplicity, we shall consider a random variable taking on values

x=20,1,2,3, -

with probabilities p(z | 6, 65, - - - , 6,) depending on r parameters. In working
with x*-minimum estimates, it is almost always necessary to truncate the prob-
ability law, taking

flx) =p(x| 6,6y, -, 6,), x=0,1,--- ,k—1, and
(1.1) o
f(k) = ; pla|6i,06, - 6,).

The ML estimates are asymptotically efficient, i.e., have minimum variance,
with respect to the probability law, p(z | 6), and the x estimates have the same
property with respect to the truncated p. 1., f(z | 6). This suggests that the op-
timum variances of the estimates of the parameters of the two in samples of N
may differ and, further, that the minimum variance of the x* estimates may de-
pend essentially upon the choice of k. In the course of some unpublished work by
Evelyn Fix and others in the Statistical Laboratory at the University of Cali-
fornia on x” estimation of the parameters of several different p. 1.’s the same
anomalous situation occurred repeatedly. When the observed data were fitted

1 This paper was presented to a joint meeting of the American Mathematical Society
and the Institute of Mathematical Statistics at Boulder, Colorado on September 1, 1949.
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by the truncated p. l. with the estimated parameters, the fit appeared to be
improved when k was chosen smaller. This suggested that perhaps, contrary to
intuition, it might be possible to improve the precision of estimation by choos-
ing k smaller, within certain limits. This paper proves that this notion is false
and that some other explanation of this phenomenon is needed.

2. Relative efficiency. Cramér [1] has shown, simultaneously with Rao [6],
that under mild conditions of regularity, the variance of an unbiased estimate,

6* = 0*(xy1, 2, -+, 2y), of & single parameter, 8, where x, , x;, -+ , Ty are
the observed sample, satisfies the following inequality for fixed N:
. 1
@1 D) > Bs
NE |:0 loiop(x)]

the lower bound being attained only by ‘“efficient” statistics. We may take as
a measure of the relative precision attainable in the estimation of the parameter
of the truncated p. 1. (1.1) the ratio of the lower bounds (2.1) of variances of the
estimates of the parameters of the original p. 1., p(z | 8), and of the truncated
p. L, f(z|6). We define

E l:a log f(x):lz :
2.2) Rel Eff. = &% '
B [6 log p(x):l
a0
In the case of functions depending on several parameters, p(z | 61,602, -+ , 6r),

and unbiased estimates, 67 , which are functions of the observed relative fre-
quencies, with non-singular covariance matrix || L;; ||, Cramér [1] showed that
the fixed ellipsoid,

(23) N Z Z 5{jtjtj =7r 4 2,

tm=] jmel

where

_ | 9log p(x) 3 log p(x)]
b = E[ 805 6; ’

lies wholly within the concentration ellipsoid,

(2.4) 22 Lt =1+ 2
=1 j=1
where || LV || = || Li; ||™". The two ellipsoids coincide if and only if the 6F are

joint efficient estimates of the ;. Thus, the covariance matrix of a set of joint
efficient estimates is || No;; ||~ In this case, we may define separately the
relative efficiency with respect to each of the parameters as in (2.2) or we may
consider the set of estimates for one function to possess greater concentration
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than the set for the other function if the fixed ellipsoid (2.3) for the first lies
wholly within the similar ellipsoid for the second. The latter will be the procedure
we adopt in section 5.

3. Estimation of a single parameter. With p(z | 6) and f(x | ) defined as in
(1.1), form the difference

(3.1) 6(k) = B [‘“‘?9_7@}2 —E [‘?_1‘%;@]2.

The regularity conditions under which the Cramér-Rao inequality (2.1) holds
involve existence of dp(x)/d6 for all x and absolute convergence of

> ()
= 90

Assuming we have a regular case of estimation in Cramér’s sense so that these
conditions hold, we may write

(3.2) s(k) = Zp(lx) [6?(96)]2 f(lk ) [af(/c)}

and, since 9f(k)/90 = > % (9p(x)/ 39) by the second of the regularity conditions
above and f(k) = D& p(z) by (1.1),

(3.3) o(k)f(k) = Z p(2) Z [\/p( ) 81;?):' - [ﬁ: 6_%%] :

By the Cauchy inequality, the right member of (3.3) is non-negative and, since
f(k) > 0, it follows that ¢(k) = 0, with the sign of equality holding only when
dp(x)/a9 is proportional to p(z) forall z = k. In this event, p(z) = Kee’®, where
K, is 2 constant depending on 6. Now, if g(z) is constant, p(z) is a rectangular
p. L. On the other hand, if g(x) is not constant, there are two cases which must
be considered, namely:

a) p(z) = Ko, z =0, and
b) p(x) = m(z|0),

0
= Ko'®, T = a.

In the first case, Ky = (Qomoe’®)™" and is independent of 6, so that we do not
have a case of estimation at all. In the second case, each p(x) for z = a is known
a priori to within a multiplicative constant depending on 6 and, hence, no essen-
tial information is lost in truncation. Thus, except in these trivial cases, the
relative efficiency is less than unity.

It then appears that, in every case of regular estimation, the variance of an
efficient estimate of the parameter of the p. 1. p(x | 6) is less than the corre-
sponding variance for the truncated p. l. f(z | 6) and that, as an immediate
consequence, the ML estimate in general is capable of greater precision than




RELATIVE EFFICIENCIES OF ESTIMATES 401

the x*-minimum estimate for fixed N. This is the result mentioned in the first
paragraph of section 1. It should be pointed out that the regularity conditions
for the Cramér-Rao inequality are stringent enough to give this result. To com-.
plete the argument for estimation of a single parameter, form the function

4 W) = () 2 0@ X p@Is(h) — 9k + 1),

where ¢(k) is defined by (3.1). Using (3.1) and (1.1), we may write

_ L Je®T, 1 [soe@7
o) = o6+ = o [ 0 TE o [5%7]

k41

3.5
(35) 1 2 ap(x))?

T Zk: ao .

; p(x)
Making use of (3.5), straightforward algebraic reduction of (3.4) gives
X ap(k) =9 ¥
69 v = [ 2B 550 - 52D 20,
prx] t+1 00

the sign of equality holding again only for the p. 1.’s discussed after (3.3). Since
the first three factors in the right member of (3.4) are positive, it follows that
¢(k) is a strictly decreasing function of k. Thus, the variance of an efficient esti-
mate of the parameter of a truncated p. 1., f(z), depends upon the choice of %
and decreases in strictly monotone fashion to the variance of the original p. 1.,
p(x), as limit. As a result, the anomalous situation mentioned in the second
paragraph of section 1 does not arise through irregularity in the behavior of this
variance.

4. Poisson and binomial probability laws. The Poisson p. L, p(z |A) = e7\"/z!
gives immediately

.| 8 log 19(90)]2 1
(4.1) E [T =5

whence, from (2.1), we obtain the usual result that the variance of the best
unbiased estimate of \ is A/N. The truncated p. 1. has 9 log f(x)/\ = (x/\) — 1
forz < (b — 1), and (3 log f(k))/oN = p(k — 1)/223 p().

Thus, ‘
2 k—1 2
42) B [ﬂ%@)] = )1\[203 p) + (O — B)pk — 1)} 4 % = DI
' 2 (@)
Writing P(k — 1) for 2.5~ p(x), we obtain finally,
Alp(k — DY

(43) Rel. Eff-l’oiuon(k) = P(k - 1) + (A - k)p(k - 1) + T—m’
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Values of p(k) and 1 — P(k — 1) are given directly in Molina’s Tables [2] for
integer values of £ and A = .001 (.001) .01 (.01) .3(.1) 15(1) 100, or may be
obtained indirectly from Pearson’s Tables [4] of the incomplete I'-function. In
the classical example of a Poisson p. 1. quoted by von Bortkiewicz, relating to
numbers of deaths due to kicks by horses in Prussian Army Corps, N = 200
and the average number of deaths per corps-year is .61. Either x* procedure would
take k = 2 and A = .6, approximately. Using these values, we find that Rel. Eff.
(k = 2|\ = .6) = .9508, i.e., the loss in efficiency incurred by using a x* esti-
mate rather than a ML estimate is of the order of five per cent.

The binomial p. 1. is given by p(z | n, 6) = (:) 6l —0""z=01---,n,

where 7 is a known parameter and 6 is the parameter to be estimated from a sam-
ple of N observations. We obtain directly E[(3 log p(x))/d6F = n/(6(1 — 6)).
Computing a similar quantity for the truncated p. 1. and making use of the nota-

tions p(x; n) = (1;') 0°(1 — 6)" and P(a; n) = 2_¢ p(x; n), we obtain, after
some reduction,
Rel. Eff-binomial(k) = I“g“a [(n - I)P(k - 3: n — 2)

1 — 2n6

(4.4) -+ Pk —2;n — 1) + nP(k — 1;n)

n{P(k — 1;n) — Pk — 2;n — 1)}2]

1— Pl —1;n) )
The form (4.4) is suitable for computation if tables, such as Pearson’s Tables
[5], of the incomplete B-function are available covering a range up to the param-
eter n. If such tables are not available (4.4) is inconvenient since it involves
probabilities associated with three different binomial laws. In this case we may
use the relations

P(a;n) — Pla— 1;n — 1) = (1 — O)pla;n — 1),

+

(4.5) pla; n) = %Gp(a —1;n—1) and
pla;n — 1) = Hp(a - Ln-—1)

to obtain the alternative form
Rel. Effbinomia1(k) = Pk — 1;n — 1) + (n8 — k)p(k — 1;n — 1)

(4.6) n n0(1 — O)[plk — 1;n — 1)]?
1—Pk—1;mn—1)+0ptk —1;n — 1)’

which involves only the one binomial p. 1., p(z |n — 1, 6).
As an example, consider the probability situation in which ten independent
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trials are made, each with the same probability of success, §. The number of
successes in each set of ten trials is one observation. On the basis of N observa-
tions, we are to estimate 6. We shall investigate the relative efficiencies when
6 = .10. Taking n = 10 and 6 = .10 in (4.6) we compute the following table of
relative efficiencies for different choices of k:

Relative efficiencies of x° estimates in the case of the binomial p. 1., n = 10,0 = .10

k Rel. Eff.
2 .8993
3 .9828
4 L9979
5 .9998

It is obvious from the table that the loss in efficiency is not great when k& = 3
and, hence, the variances of the x” estimates are practically equal to the variance
of the ML estimate. But, in ordinary practice, N, the number of sets of ten trials
each, would have to be over 140 before k could be safely chosen as large as
k = 3,and even k = 2 requires N = 38. Cases in which we seek to estimate
parameters on the basis of about 100 observations are not rare; in the present
instance, use of a x’ estimate would produce about 119, greater variance than
the use of a ML estimate.

The two elementary examples considered in this section provide only very
fragmentary evidence of the need for caution in employing x’-minimum esti-
mates; much numerical work would have to be done to provide any reliable guide
to the relative efficiency of such estimates.

b. Estimation of two or more parameters. Consider the p. 1. p(z |6, 6.,
<o, 0,z =0,1,2, --- with ellipsoid of concentration for a set of joint effi-
cient estimates given by (2.3). The truncated p. 1. given by (1.1) has a corre-
sponding ellipsoid of concentration

(2.3 N D sitit; =r + 2,

=] je=]

with 8;; = E[a logof (z) 9 l(:?go / (x)]- We shall show, in this section, that the el-
i i

lipsoid (2.3) lies wholly within (2.3"); thig is so if the left member of (2.3) is
uniformly greater than the left member of (2.3’), for every choice of the ¢;, 7 =
1,2, --- , r. Accordingly, we form the difference,

(5.1) Q) = i Zr: (6i — 8itit; .

i=]1 j=1

Adopting the notations,

3p(@) and fi(zx) = 3fz)

a0;

p.(2) = P
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we obtain by direct subtraction,

(52) Q) = Z; E_; [; pi(;)(:;(x) _ fi(r%f;)(k) ] s,

Equation (5.2) is unchanged if the right member is written in the form

63)| Q) =53 [E {’”"(x)”f(‘”) 5 )

e Y o
; i\K) p\& y
v + RO T .

If this latter is now written as

pi(x) _ fik)\ (pi(x) _ fik)
60 oo = £ 500 g 2{C5 - 76) G - i po o

it is evident that the expression in square brackets in the right hand member is

precisely the mean value of the expression in curly brackets taken over the set

xz = k. If we denote by E {g(x)} the expected value of g(z) over the set z = k,
z=k

we have

2@ £\, (0 LB\,
65 QW =R 250 5 {(pu) f(k))"’ (p(x) f(k)>t’}'

Finally, since the (finite) sum of the expected values is equal to the expected
value of the sum, we have,

_ * [piz)  fi(k) }
5.6) Q) = fUo) B {E [p<x> 0) ]t

Since f(k) > 0, Q(k) = 0. We need only note that Q(k) = 0 only if the linear form
in curly brackets in (5.6) is identically zero, i.e., if each coefficient of ¢; vanishes.
This can happen only in the trivial cases analogous to those described in Sec-
tion 3.

It has been shown that the ellipsoid of concentration of a set of joint ef-
ficient estimates of the parameters of a p. 1. lies wholly within the corresponding
ellipsoid of the truncated p. 1. Therefore, the best procedure for estimating the
parameters of a truncated p. l. cannot attain the precision of an efficient pro-
cedure for estimating those of the original p. I.

In order to complete the argument for the general case, we form the difference

Q) — QU + 1) = ; ; [m;c))(%(k) 3 f,-o;)(J;,-)(k)

&+ Vi + 17,
O+ D) ]“"

Making use of the two relationships f(k) = p(k) + f(k + 1) and fi(k) =

(5.7)

4L
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pi(k) + fi(k + 1), we have

_ _ p(R)f(k 4+ 1) { S [pak) _ filk 4+ 1) }2
68 b -Qk+D) i) é?[p(k) G+ D ]" '

The right member of (5.8) being positive except in the trivial cases, it is clear
that Q(k) is a strictly monotone function of k.

6. Conclusions. It has been shown that the efficiency of x>-minimum estimates,
or any other estimates which involve computation in terms of a truncated p. 1.,
is necessarily less than the efficiency of corresponding ML or other estimates
based on the original p. 1. and, further, that the efficiency increases with the
point of truncation. This was established for estimates of a single parameter and,
also, for joint estimates of several parameters. Examples given indicate that,
in any case of regular estimation, use of x’-minimum estimates rather than ML
estimates should be accompanied by an investigation into the loss in efficiency.

The author is indebted to Professor J. Neyman, who suggested the problem.
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