ON UNIFORMLY CONSISTENT TESTS
By AeNES BERGER

New York City

1. Introduction. If we wish to decide on the true distribution of a random
variable known to be distributed according to one or the other of two given distri-
butions Fo and F,, then, no matter how small a bound is given in advance, it
is always possible to devise a test based on a sufficiently large number of inde-
pendent observations for which the probabilities of erroneous decisions are
smaller than the previously assigned bound. A sequence of tests for which the
corresponding probabilities of errors tend to zero has been called consistent [1].!

Let .us suppose now that all we know about the true distribution of some ran-
dom variable is that it belongs to one of two given families of distributions
and it is desired to decide which of the two it belongs to; i.e., we have to test a
composite hypothesis. It may again be possible to construct a sequence. of tests
{T;},5 = 1,2, .- -, such that for any ¢ > 0 there exists an index N such that
for j > N the probabilities of errors corresponding to T'; are smaller than e.
The sequence {7';} may then be called uniformly consistent. Conditions under
which uniformly consistent tests exist have been given by von Mises [5], and
by Wald [2], [3]y [4], as implied, for example, by his proof of the uniform con-
sistency of the likelihood ratio test. In this paper a different set of conditions is
given which do not restrict in any way the nature of the distribution functions
considered. It is also shown that the conditions to be described are satisfied in a
large class of cases occurring in practical statistics. .

Since the results we are to prove have their counterpart in abstract measure
theory we shall take advantage of that method. The reader will have no difficulty
in establishing the correspondence between the statistical and measure theoretical
formulation.

Notations. Let X be an arbitrary set and B a Borel field of subsets B of X.
Let 91(B) be the family of all probability measures m(B) defined on B, i.e., the
family of all countably additive nonnegative set functions defined on B for
which m(X) = 1. Hereafter a “measure” will denote an element of 9 (8B) and
a “set of measures” a subset of 9M(PB). For any positive integer k, let X* be

the kth direct product of X by itself, 8* the kth direct product of B by itself,

&* the field consisting of all finite sums of sets of B* and B the smallest o-field
containing &*. For any measure m on B, we define m” in the usual way as the
unique measure defined on B* for which
1 1
m* (; B Bige -+ - 'B€k> = 21 m(Bi)m(Bs) +« - m(Bu)
for any disjoint system B;; €8, ¢ =1,2,++-,1;5=1,2,---, k, where [ is
an arbitrary positive integer.

1 This is a slightly modified form of the definition in [1].
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2. A known lemma. The main result will be established by a generalization
of the following well known lemma.:

Lemma 1 (BeErNourni). Let M = {m} and M’ = {m'} be two disjoint sets
of measures. If there exists a set A in B and a & > 0 such that

| m(A) — m'(4) | > 25

for all m in M and all m' in M’, then, for any € > 0 given in advance, there exists
an integer k and a set E in G such that

m*(E) < e for all m in M

and
m*E) > 1 — e . for all m' in M'.

This is an almost immediate consequence of Bernoulli’s theorem, but for
sake of completeness I include a proof.

Proor. For any two integers n and r, 0 < r < n, let R(n, r) be the union
of all regions in X" defined by restricting r of the first » coordinates to A, and
the remaining n — r to (X — A). For any fixed =, let for any measure p

Sr = U R(n, ).
{r]lz=ntor] 28}

(Here {t| T} means the set of all {’s which satisfy relation T, as customary.)
Let € > 0 be given. By Bernoulli’s theorem, there exists an integer n(e) such
that
@) = T (M) w@rn - sar <e
{r[| s—ntr| =8}
Let E = N,..»Sn . Since for any fixed n there are only a finite number of differ-
ent S, E is in " and

m"(E) < e
for all m in M. Since for any m in M and m' in M’,
"] 22— ) - 7,
n n

we have | (r/n) — m(4)| > & for all r satisfying | m’(4) — (r/n) | < & for
some m’ in M’. Hence if z isin (X" — S,./) for some m' in M’, then z isin E and

m'"(E) > m'"(X" — Sp) > 1— ¢

for all m’ in M'.
In the special case M = m, M’ = m/, this proves the statement in the in-

troduction concerning simple hypotheses.

3. The main results.
DEerINITION. Let M = {m} and M’ = {m'} be two disjoint sets of measures.
We shall say that they satisfy “Condition 1"’ if the following holds: M <s the union
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of a finite number of its subsets M;, 1 = 1,2, --- , k, such that for every ¢ there

exist

(i) @ covering of M’ by a finite number of its subsets Mi;, j = 1,2, -+ , hi,

(ii) a sequence of sets Aijin B,j =1,2,-+-,h;, and

(i) @ & > 0 such that | m(A:;) — m'(Asj) | > & for every m in M, and every
min Miy,j=1,2-,h;i=12 -,k

Condition 1 is satisfied for instance if both M and M’ contain only a finite
number of measures.

LemMma 2. Let M = {m} and M’ = {m’} be two disjoint sets of measures and
assume that they satisfy Condition 1. Then for every e > 0, there exist an integer
n(e) and a set E in & " such that m"(E) < efor all m in M and m'"(E) > 1 — e
for all m' in M’.

ProoF. Assume first that &k = 1. Then M; = M, = M, and we can put M 1 j=
Mj, b = h, A;; = A;. Condition 1 then states that | m(4;) — m'(4;)|> &
for every min M and m’ in M’,j = 1,2, -+, h. By Lemma 1, for any ¢ > 0
there exists n; and E; in " such that m"(E;) < e¢/h for all m in M
and m'™(B;) > 1 — ¢/h for all m’ in M;. Let n = max n; and

3
E =UE;: X"™,
i=1

Then E is in € and
B < 3w X = 3 miE) <
for every m in M, and if m’ is in any fixed M} R
m™E) >m™ EB)>1-:21—¢

80 that
m™EB) > 1—¢

for all m’ in M’.

Now if k > 1, let us choose some & 0 < & < %, and apply the above argu-
ment to each M; . We get m™(E;) < &for all m in M, and m'(E;) > 1 — & for
all m’ in M’. Hence

[ m™(EB;) — m™(E)| > 1— 2> 0,

so that Condition 1 is satisfied with & = 1 and with the set {m'®™>"*} taking
the place of M and the set {m™*"} taking the place of M. It is easy to see
that also in this case E still belongs to the field €".

If we do not require that the set E in the conclusion of Lemma 2 belong to
& ™ but only that it belong to B'", we can relax Condition 1 in the following
obvious way:

THEOREM 1. In order that two disjoint sets of measures M = {m} and M' =
{m'} be such that for every ¢ > O there be an integer n and a set B in B for which
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m*(B) < e for every m in M and m'™(B) > 1 — e for every m' in M, it is neces-
sary and sufficient that for some inleger v the sets {m’} and {m "} satisfy
Condition 1.

TaEOREM 2. Let M = {ms}, M’ =+{m.} be two disjoint sets of measures, a <
0 <ba <1<V, where [a, b] and [, b') are two disjoint, closed intervals of
some ﬁnite—dz’mensional Euclidean space, and assume that, for each B in B, me(B)
and m.(B) are continuous functions of 8 and r, respectively. Then for any ¢ > 0
given in advance, there e:mst an integer n(e) and a set E in € " such that mg'(E) < €
for all 0 in [a, ] and m"(E) > 1 — e for all 7 in [d', V]

Proor. It is sufficient to prove that M and M’ satisfy Condltlon 1. For any
6 in [a, b] and any r in [a’, b’], let Bs, denote a set in B for which

@ | mo(Ber) — m:'(BO‘r)I > e > 0. -

(This is obviously possihle.)
Let us now hold 6 fixed. Because of the continuity of m, , for every = there
exists a 8, > 0 such that whenever | 7 — 7| < 8. then

©@ | mi(Bo) — me(Bar) | < 5.
Since [a’, b] is compact, it can be covered for each fixed 8 by a finite subset of
the open intervals Ia, = ( 50,— + Ty T + 39-,), say Io; 2 Ioz gyt Io;,(o) y with
mldpomts Te1, Tez, ', Tewe . Denote the values of m., ha, , Ba,, € , Ogr At
T = Toj by m;j , hoj , Bo,' y €07, 8 , respectlvely, fOI‘j = 1 2 h(0)

Since my is continuous in 6 for all B, there exists a positive number ps such
that whenever | § — 8| < ps then simultaneously forj = 1,2, ---, k(6)

@) | me(Bs;) — mi(Byj;)| < 3 min e;,
J

and since [a, b] is compact, it can be covered by a finite subset of the open in-
tervals Ly = (—‘po + 6,0+ po), sayL; = (—p,' + 0:,0. + p,‘),i =1, 2, ety k.
Let us denote the values of 7o;, Boj, h(0), €;, %;, Ls; at 6 = 0; by 7:;, Bij,
hi, €, 0:5, Ii; , respectively. Then the setsM = {mp|0inL;},c=1,2,---,k,
cover M, and for each 7 the sets | Mi; = {m; | rin I;;},j = 1 2 , hi , cover
M. Furthermore it follows from (1), (2), and (3) that as long as 0 is in M; and
T in M.j N

| ma(Bij) — mi(Byj)| > | may(Bij) — mMag;(Bij)| — | may(Bs;) — ma(Bij)]
- |m:’(Bi.‘f) - m:u(Bif)l > €5 — %m}ln €6 — Se;>171>0,

i=1)2)""k; j=112:""’h5’

as we wanted to prove.

In the statistical terminology of the introduction, Theorem 2 may be restated
as follows: Let H, be the hypothesis that the unknown distribution of some
random variable belongs to a set of distributions M, and H, that it belongs to
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another, M’, where M and 3’ satisfy the assumptions of Theorem 2. Then
there exists a uniformly consistent sequence of tests for testing H, against H, .

4. An example. Let F(t) = (1/4/2x) ¢ ™", Hy = F(0), H, = {F(1),1 < t < 2)
Let ‘

&+ @+ "’+“’">c,.},

Rn,i={(x1,1:2,°"’xn) n

t=12-5n=12 -,

where ¢; is determined so that P(R,|0) = 1/, P(S|t) denoting the prob-
ability of the region S when ¢ is the true mean. Thus R,,; is the uniformly most
powerful region of size 1/7 in n-dimensional sample space for testing H, against
H; . The regions R, define a uniformly consistent test. A proof avoiding all
computation is based on Theorem 2 as follows. Let ¢ > 0 be given; find 7 such
that 1/2. < e. By Theorem 2, there exists an N and a Borel set B in the N-
dimensional sample space such that P(B|0) < 1/i and P(B|t) > 1 — 1/i
for 1 < ¢ < 2. Let W be a region in N-dimensional sample space covering B and
such that P(W |0) = 1/i. Then P(W |0) = P(R,:|0) = 1/i < ¢, and by
the definition of Ry,;

PRy | ) 2 PWI[) ZPBI)>1—1/i>1—¢ 1<t<2.

It is a pleasure to express my best thanks to Professor J. Wolfowitz for calling
my attention to the problem and to Professors J. von Neumann and H. Scheffé
for their valuable suggestions.
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