ESTIMATION OF PARAMETERS IN TRUNCATED PEARSON
FREQUENCY DISTRIBUTIONS
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1. Introduction and summary. A method based on higher moments is pre-
sented in this paper by which the type of a univariate Pearson frequency dis-
tribution (population) can be determined and its parameters estimated from
truncated samples with known points of truncation and an unknown number of
Tnissing observations. Estimating equations applicable to the four-parameter
distributions involve the first six moments of a doubly trtncated sample or the
first five moments of a singly truncated sample. When the number of parameters
to be estimated is reduced, there is a corresponding reduction in the order of the
sample moments required. A sample is described as singly or doubly truncated
according to whether one or both “tails’ are missing. Estimates obtained by
the method of this paper enjoy the property of being consistent and they are
relatively simple to calculate in practice. They should be satisfactory for (a)
rough estimation, (b) graduation, and (¢) first approximations on which to base
iterations to maximum likelihood estimates.

Previous investigations of truncated univariate distributions include studies
of truncated normal distributions by Pearson and Lee [1], [2], Fisher [3], Stevens
[4], Cochran [5], Ipsen [6], Hald [7], and this writer [8], [9]. In addition, the
truncated binomial distribution has been studied by Finney [10], and the trun-
cated Type III distribution by this writer [11].

2. Complete distributions. The Pearson system of frequency curves has its
genesis in the differential equation

0 1 df (x) _ a—
flx) dx bo + biz + b22?’

where the origin is arbitrarily taken. Since we are concerned with truncated
distributions, it is convenient to take the origin at the left terminus. In the
derivations which follow we regard a, by, b1, and b, as primary characterizing
parameters of the distributions studied. The mean, standard deviation, as,
and oy are expressed as functions of these quantities. To obtain a moment
recursion formula for the general Pearson (complete) function, f(x), we separate
the variables of (1), multiply both sides of the resulting equation by z*, and
integrate over the full range of permissible values of z, i.e., r < x < s. Thereb

we obtain -

@) ./: ) (b + biz + by2?)a" df(z) = fr ' (a — )"f(z) d.
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Let the kth moment of the complete (population) distribution function, f(x),
about the origin selected (i.e., about the left terminus) be designated as

® w = [ o) do,

and the right member of (2) become§ )
QU = PE+1 -

Upon integrating the left member of (2) by parts, we obtain
[(B + bz + bax®)z4(@)]s — Kbowrs — (B — )by — (& + 2)pnsr -

The Pearson system includes only those solutions of (1) for which f(r) = f(s) = 0,
and moreover only those for which the left member of.the above expression
vanishes at both limits. As a consequence of these restrictions, we may com-
bine the left and right members above, to obtain the following recursion formula
for moments of the complete distribution about the origin:

4) hui + bokuos + bikur + ba(k + 2prsr = pr41
where we have written 4
(5) h=a-+b:.

If f(z) is normalized so that uo = 1, and we let k = 0, 1, 2, and 3, successively,
in (4), the resulting system of equations may be written as

(2 — 1wt = —h,
o o Wt + Bby — Dus = —b,
2bout + (201 + h)us + (4by — L)us -0,

3bouz + (3b1 + R)us + (8bs — L = 0.
On solving (6) for moments of the complete distribution we obtain
I"i = h/(l - 2b2),
ps = [bo + (b + h)u1l/(1 — 3by),
ws = [2bops + (2b1 + R)us)/(1 — 4b),
pi = [Bbops + (3by + h)usl/(1 — 5by).

With &, by, b1, and b, known, it is a simple matter to determine ™ , Us s K3,
and ps from equations (7) in the order named. These equations might, of course,
be rewritten with u , us, and p3 entirely eliminated from the right members.
However, when this is done they become 900, compllex in structure to be of
practical value. After calculating Ui, k2, us, and us from (7), corresponding
central moments can be determined from the well known translation formula

® o= 2 (1) whted

=0

™
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and the standard moments from

(9) o = ;lk/ a",
where 6> = p,. The second central moment then becomes
_ 1 h hb.
(10) A T [b° T, {b‘ Tz 2b2}:|'

Similar formulas can also be written for u; and us, but they are too unwieldy
to be useful. For each practical application, it seems preferable to compute
noncentral moments about the left terminus from (7). Central and standard
moments, as required, can then be obtained from (8) and (9).

If we designate the left truncation point in standard units of the complete
distribution by &, we have & = (0 — u1)/c and thus

(11) p = —at’s

Although formulas expressing the mean, standard deviation, a3, and oy
explicitly as functions of a, by, b1, and b, are unduly complex for the four-
parameter distributions, as shown below they become relatively simple for
Type III and Normal distributions.

Type I11 distribition. In this case b, = 0, and we have

g = h, h = —dt,
(12) o = Vb + bik, by = cas/2,
a3 = 2b1/\/ bo + bl 9 bO 0'2[1 + E'a3/2]'

Normal distribution. In this case by = by = 0, and

I‘; = h, h = —d¥,
o =by, bo=7d.

3. Recursion formula for moments of incomplete distributions. If the limits
of integration in equation (2) are reduced to include only the truncated range
0 <z<d,wherer < 0and d < s, we have

0 [t hrt bt i@ = [ @ - D2 d
0
Define the kth moment of the truncated distribution about the left terminus as

15 m = [ @ as,

with my = 1, and the right member of (14) becomes

(13)

amyg — Mg41 .
On integrating the left member of (14) by parts we obtain
[(Bo + bz + box’)a*f(x)]s — Kboemuy — (k 4+ 1)bymy .
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Since we are not integrating over the full range of =z, the first term of the above
expression does not vanish as it did with the complete distribution. However,
if we define

Fy = f(0)bs,
F = f(d)[bo + dbs + d’bs],

and then combine left and right members above, we obtain the following recur-
sion formula for moments of the truncated distribution:

(17) hm;, + bokmk_l + blkm,, -|- bz(k + 2)mk+1 — d*F = Mi41 (k 2 1).

If we let k = 0 in (14) prior to integrating, and then proceed as outlined above,
we obtain

(18) h+2m1bz+F1—-F=m1,

which may be regarded as a companion equation to (17) for the case k = 0.

(16)

4. Estimating h, b, b:, and b, from doubly truncated samples. To obtain
estimates by equating observed sample moments to population moments, we
substitute the observed sample moments v for the m; in (17), simultaneously

replacing the population parameters &, b;, ---, and F by their estimates &*,
b7, -+, F* Setting k = 1, 2, .-+, 5, successively, we find the estimating
equations

nh* + by 4+ wby + 3wby — dF* = ny,
vh* 4 2vbg + 2uby + dvby — dPF* = », ,
(19) vsh* + 3wbs + 3wsbr + vy — &'F* = »,,
vsh* + 4vbs + 4wt + 6vsby — d'F* = g ,
vsh* + Bubs + 5uby + Twsbs — d°F* = »s.

These constitute a linear system of five equations in the five estimates, h*, by ,
by, by , and F*, which can be solved by any of the standard methods applicable
to such systems. For practical applications, the writer suggests using either
the method of “single division” or “multiplication and subtraction’’ as described
by Dwyer [12]. With estimates h*, by , by , and b5 thus calculated, we substitute
these values in (7) to estimate moments of the complete distribution, and sub-
sequently compute the required estimates of population (complete distribution)
parameters with the aid of (8) and (9). F; can be computed from (18) upon re-
placing parameters by their estimates and m; by », . It will be noted that these
estimates are consistent since if they should be calculated from the entire popula-
tion they would obv1ously equal the required parameters.

Although neither F; nor F* is required in estimating moments of the com-
plete distribution, a comparison of their values found on solving (18) and (19)
with corresponding values computed from the finally fitted curve with the
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aid of (16) affords a check on agreement between the fitted curve and observed
sample data.

It should be noted here that estimates are distinguished from parameters
throughout this paper by starring (*) the estimates.

5. Determining type of distribution. With estimates of u1, o, s, and a
computed as indicated in Section 4, the type of the distribution involved can
be established from the original Pearson criteria, an excellent exposition of
which has been given by Elderton [13], or from the Carver-Craig criteria [14].
In the present instance, however, since estimates of bo , b1, and b, must of neces-
sity be computed before estimates of the population parameters can be ob-
tained, it seems more appropriate to determine the type directly from the quad-
ratic equation

(20) bo + bww + bia” = 0.
The general solution of the differential equation (1) can be written as
21 f@) = Clx — m)™(r — 2)™,

where r, and 7, are roots of (20) (cf., for example, [14]). The nature of these roots
determines the type of the distribution. If we let D designate the discriminant,
D = b — 4beb, , the principal Pearson curves' may be classified as follows:

Type 1 rl—u{<0<rz—ui, D > 0;
I (= pt) = —(re — 1), b = 2but, D > 0;
I 5. =0
IV 7 and 7, imaginary, by # 2baus D < 0;
V. (r — p1), (rs — 1) of the same sign, D > 0;
VI r; and 7, imaginary, b, = 2baus D < 0;
Normal by = b, = 0.

It can be shown that a necessary condition for the odd central moments to
equal zero (i.e., for f(z) to be symmetrical about is mean) is that

by = 2baus .

6. Singly truncated samples. If only the left tail is omitted, then F' vanishes,
and we can drop from (19) the last equation, which would otherwise be required,
after placing F* = 0 in the remaining equations. If only the right tail is missing,
then F; = 0, and by changing the variable from z to d — « we can translate the
origin to the truncation point on the right, set F{ = 0, and again drop the last
equation otherwise required in (19). As an alternate and frequently preferable

1 The numbering of the types followed here is that of Craig [14].
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procedure when some origin other than the truncation point of a singly truncated
sample has been employed, we might substitute (18) for the last equation of
(19) after replacing parameters by their estimates. In both instances, the order
of the highest order sample moment fequired is reduced by one from the re-
quirements for doubly truncated samples.

In practical applications, finding either Fy or F* equal or almost equal to
zero from a sample that is represented as being doubly truncated, suggests that
perhaps the sample was in fact only singly truncated. In this case, either the
sample terminus is the terminus of the complete distribution or the absence of
lower sample values is due to the small probability associated with their oc-
currence. Finding both F; and F* equal or nearly equal to zero suggests that
the sample was not truncated after all, and that the necessary estimates should
be computed from estimating equations applicable to complete samples.

When the sample terminus is employed as an estimate of the corresponding
population terminus, an additional equation may be dropped from (19) since
in this case we are estimating one less parameter from the moment equations.
To illustrate, consider a Type III distribution for which the left sample terminus
(origin) is considered as an appropriate estimate of the population lower limit.
We then have '

h = 2¢/a3,
and from (12)

h = (bo + bih)/by .

Consequently it follows that by = 0, and the system of estimating equations to
be solved consists of the first two equations of (19) plus (18) with by = by = 0.
The parameters appearing in (18) are of course replaced by their estimates.

7. Type III and normal distributions. When it is desired to estimate param-
eters of a Type III distribution (for which b, = 0) from a doubly truncated sam-
ple, we need calculate only the first five sample moments and solve the first
four equations of (19) after placing by’ = 0. With singly truncated samples from
which the left tail is missing, we require only the first four sample moments and
need solve only the first three equations of (19) after setting F* = 0.

To estimate parameters of a normal distribution (for which b, = b, = 0)
from doubly truncated samples, we calculate the first four sample moments and
solve the first three equations of (19) after setting b = by = 0. With singly
truncated samples from which the left tail is missing, we require only the first
three sample moments and need solve only the first two equations of (19) after
setting F* = 0.

8. A numerical example. To illustrate the application of results obtained in
this paper to practical problems, we consider an example given by Miss Shook
[15] on-the weights of 1000 female students (cf. Table 1). Miss Shook considered
her data as a complete (untruncated) sample from a Pearson Type III popula-



TABLE 1

Weights of 1000 female students

Graduated frequencies based on Type III
Observed . distribution
Weight in pounds | fre- Limit at
quency | Complete |Truncated Doubly
. sample
sample on right - truncated
terminus
70- 79.9 2 0 0.2 0.0 0.2
80— 89.9 16 4 12.8 8.4 12.7
90- 99.9 82 | 102 94.0 97.5 94.0
100-109.9 231 | 238 213.7 223.6 214.0
110-119.9 248 | 250 254.1 247.9 253.9
120-129.9 196 | 184 200.9 191.7 200.8
130-139.9 122 111 120.7 118.6 120.6
140-149.9 63 59 59.5 63.2 59.4
150-159.9 23 29 25.2 30.2 25.2
160-169.9 5 13 9.5 13.3 9.5
170-179.9 7 6 3.3 5.5 3.3
180-189.9 1 3 1.0 2.2 1.0
190-199.9 2 1 0.3 0.8 0.3
200-209.9 1 0 0.1 0.0 0.1
210-219.9 1 0 0.0 0.0 0.0
Total............. 1000 {1000 995.3 1002.9 995.0
Total frequency in
truncated range. . 981 | 977 980.9 981.1 980.6
M* (Ibs.) 118.74 118.55 119.14 118.56
a* (lbs.) 16.9175 16.027 16.958 16.024
o 0.976424 0.655 0.865 0.657
Lower limit (lbs.).......... 84.09 69.61 79.95 69.77
7 (from sample moments)............. 0 0 —0.002
! (from fitted curve).................. 0.006 0 0.005
« (from sample moments)............. 0.767 1.358 0.769
(from fitted curve).................. 0.732 1.183 0.733

Truncated sample obtained by truncating the complete sample on the left
at 79.95 lbs. and on the right at 159.95 lbs.
262
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tion, and employed the method of moments to estimate population parameters.
Using these estimates, she then graduated the observed sample data.

For our purposes, we truncate Miss Shook’s sample on the left at 79.95 lbs.
and on the right at 159.95 Ibs., thus'eliminating the first and the last six cells
of the grouped data. The retained (truncated) sample then consists of 981 ob-
servations, all of which are within the range 79.95 to 159.95 lbs. We disregard
all prior knowledge about the type of the population, and accordingly compute
the.first six sample moments about the lower terminus. In order to compensate
for moment errors due to grouping, we apply Sheppard’s® corrections for non-
central moments. Both sets of moments are given below.

Uncorrected moments Corrected moments

= (7.56676860) 5 v = (7.56676860) 5

= (66.4026504) 52 vs = (66.0693171) 52

= (649.817533) 58 vy = (642.250764) 5°

= (6913.71764) 5* vy = (6781.37901) 5¢

= (78479.9827) 55 vy = (76331.5834) 5°

= (937015.638) 5° ve = (902910.393) 5¢
We substitute these values in (19) and solve the system by Dwyer s method
of multiplication and subtraction to obtain h* = 44.973178, by = —53. 5929,
bY = 12.339508, by = —O0. 084107, and F* = (.578321. From (18) we then
obtain Ff = —0.196817. The small negative value thus computed suggests

that perhaps F; actually has the value zero and that there was no truncation on
the left.

Considering the sample as being truncated on the right only, and rather than
translate our origin to the right sample terminus, we substitute (18) with Ff = 0
for the last equation of (19) to obtain a new system of five equations in the same
five unknown estimates as before, but involving only the first five sample
moments. On solvmg the new set of equations, we obtain h* = 38.530928,
be = 54.83444, bf = 5.179891, b2 = 0.000986, and F* = 0.771707.

The small values obtained for by in both the above cases lead us to conjecture
that b, actually has the value zero, and that our sample came from a Type III
population.

With the sample considered as coming from a Type III population and as
being truncated on the right only, we solve the system consisting of the first
three equations of (19) plus (18) with by = F; = 0, and obtain h* = 38. 600670,
be = 54. 1194, bf = 5. 247727, and F* = 0.766827. On substltutlng these values
in (12) we have ui* = 38.60 Ibs., o* = 16.027 lbs., and o3 = 0.655. The mean
referred to zero as an origin is estimated as M* = p.{* + 79.95 Ibs. = 118.55 Ibs.
The corresponding estimate of the lower limit is 69.61 lbs. A graduation of the
sample data using these estimates and carried out with the aid of Salvosa’s

% See for example reference [16], formula 27.9.3, page 361.
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tables [17] is given in Table 1, along with Miss Shook’s original graduation
which was based on estimates from the complete sample.

To provide additional comparisons, we compute further estimates with the
sample assumed to be doubly truncated from a Type III population. Accord-
ingly, we solve the first four equations of (19) with by = 0 to obtain h* =
38.605540, by = 53.5835, b = 5.262710, and F* = 0.769439. From (18) we find
Ff = —0.002258. Similarly, we calculate an additional set of estimates under
the assumption that the sample was truncated on the right only but with the
left sample terminus being the lower limit of the complete distribution. In this
case, the system of three equations consisting of the first two equations of (19)
plus (18) with by = by = 0 yields the solutions h* = 39.191957, b = 7.337336,
and F* = 1.358114. Estimates of the basic population parameters for each of
the above cases, along with graduations over the complete sample range, are
also included in Table 1.

The agreement between observed and graduated frequencies is found to be
much better for estimates based on the truncated sample than for estimates
based on the complete sample. The improved results obtained with the truncated
sample suggest that perhaps some of the extreme observations in Miss Shook’s
original data came from a different population than that which accounted for
the main body eof her data. It makes little difference whether the truncated
sample is considered as being singly or doubly truncated or whether the left
sample terminus is used as an estimate of the population lower limit or not. It
will be also noted that the values of Fi and F* as computed from the finally
fitted curves with the aid of (16) are in substantially close agreement with the
corresponding values found on solving the moment equations. In each case the
graduations are very nearly equal throughout the entire sample range, and any
one of the truncated sample graduations would be considered as a satisfactory
fit to the observed data over the truncated range. Certainly any one of the
three sets of estimates would, for this example, be adequate as first approxima-
tions on which to base iterations to maximum likelihood estimates in a manner
similar to that previously employed by Koshal [18] in improving moment esti-
mates from complete samples. The writer hopes to give further consideration
in a subsequent paper to the problems of such iterations when samples are
truncated.
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