To prove (a), note that for $|t_i| < \alpha_i$, $x_1 \ge 0$, we have

(4)
$$\iint_{u_{i} \geq x_{i}} dF_{n}(u_{1}, u_{2}) \leq \exp(-|t_{1}|x_{1} - |t_{2}|x_{2})$$

$$\iint_{u_{i} \geq x_{i}} \exp(|t_{1}|u_{1} + |t_{2}|u_{2}) dF_{n}(u_{1}, u_{2}) \leq M_{0} \exp(-|t_{1}|^{7}x_{1} - t_{2}|x_{2}),$$

where $\varphi_n(\mid t_1\mid,\mid t_2\mid) \leq M_0$. Such a number $M_0=M_0(t_1,t_2)$ exists since $\{\varphi_n(\mid t_1\mid,\mid t_2\mid)\}$ converges for $\mid t_i\mid<\alpha_i$. This gives an estimate for $M_n(x_1,x_2)$, which shows that (a) holds. The Helly selection principle ([2], pp. 60-62 and 83) leads to (b). The relations (c) and (d) follow immediately from Theorem 1. From Theorems 1 and 2 we obtain

THEOREM 3. Let $\{F_n(x_1, x_2)\}$ be a sequence of df's and let $\{\varphi_n(t_1, t_2)\}$ be the corresponding sequence of mgf's which are all assumed to exist for $|t_i| < \alpha_i$. Then the necessary and sufficient condition for the convergence of $\{\varphi_n(t_1, t_2)\}$ for $|t_i| < \alpha_i$ is that the relations (a) and (b) of Theorem 2 be satisfied.

REFERENCES

- [1] W. KOZAKIEWICZ, "On the convergence of sequences of moment generating functions," Annals of Math. Stat., Vol. 18 (1947), pp. 61-69.
- [2] H. CRAMÉR, Mathematical Methods of Statistics, Princeton University Press, 1946.

A NOTE ON THE MAXIMUM VALUE OF KURTOSIS

By H. C. Picard¹
University of Ghent

In "A note on skewness and kurtosis," J. E. Wilkins (Annals of Math. Stat. Vol. 15 (1944), pp. 333–335) gave a short and elegant proof of the inequality for skewness and kurtosis

$$\beta_2 \ge \beta_1^2 + 1.$$

Then he gave an upper bound, depending on the population size N, for the skewness:

(2)
$$\max \beta_1 = (N-2)/(N-1)^{\frac{1}{2}}.$$

Now we shall derive an upper bound for the kurtosis. It will appear that the sign "=" in (1) is valid for the upper bounds, and the two maximum values indeed arise in the same "extreme" population.

To find the maximum value of the kurtosis β_2 we consider the function $\sum x_i^4$ in the x-space, where $\sum x_i^2 = N$ and $\sum x_i = 0$. We have to maximize $\sum x_i^4 - \lambda \sum x_i^2 - \mu \sum x_i$. The maximizing values are given by the N equations, found by differentiation with respect to x_i

$$4x_i^3 - 2 \lambda x_i - \mu = 0,$$

^{1 &}quot;Aspirant" of the Belgian National Foundation for Scientific Research.

together with the two relations $\Sigma x_i^2 = N$ and $\Sigma x_i = 0$. Multiplication with x_i and summation over all N equations give

$$4N\beta_2 - 2N\lambda = 0;$$

hence

$$\max \beta_2 = \frac{1}{2}\lambda.$$

Since it is not possible that all values of x in the population are equal, the equation (3) of third degree must have at least two different real roots, and hence it has three real roots, which we may represent by

$$\sqrt{\frac{2\lambda}{3}}\cos\alpha$$
, $\sqrt{\frac{2\lambda}{3}}\cos(\alpha+\frac{2}{3}\pi)$, $\sqrt{\frac{2\lambda}{3}}\cos(\alpha+\frac{4}{3}\pi)$,

where $\cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha = \mu/(2\lambda/3)^{3/2}$. Suppose the number of those roots is, respectively, k, l, and m, with sum N. Writing v for l-m, we have, since not all values in the population can be the same,

$$\begin{cases} 1 \le k \le N-1 \\ \mid v \mid \le N-k \end{cases} \quad \text{or} \quad \begin{cases} k=0 \\ \mid v \mid \le N-2 \end{cases},$$

with v even if N - k is even and v odd if N - k is odd. $\Sigma x_i = 0$ gives, since $\lambda \neq 0$,

$$(k - \frac{1}{2}l - \frac{1}{2}m)\cos\alpha + (\frac{1}{2}\sqrt{3}l - \frac{1}{2}\sqrt{3}m)\sin\alpha = 0,$$

$$(\frac{3}{2}k - \frac{1}{2}N)\cos\alpha + \frac{1}{2}\sqrt{3}v\sin\alpha = 0,$$

$$\tan\alpha = -\frac{3k - N}{v\sqrt{3}},$$

$$\sin\alpha = \frac{3k - N}{\sqrt{(3k - N)^2 + 3v^2}},$$

$$\cos\alpha = \frac{-v\sqrt{3}}{\sqrt{(3k - N)^2 + 3v^2}}.$$

Hence our second relation $\sum x_i^2 = N$ gives

$$\frac{3N}{2\lambda} = k \cos^2 \alpha + l(-\frac{1}{2}\cos \alpha + \frac{1}{2}\sqrt{3}\sin \alpha)^2 + m(-\frac{1}{2}\cos \alpha - \frac{1}{2}\sqrt{3}\sin \alpha)^2
= k \cos^2 \alpha + (l+m)(\frac{1}{4}\cos^2 \alpha + \frac{3}{4}\sin^2 \alpha) - (l-m)\cdot\frac{1}{2}\sqrt{3}\sin \alpha\cos \alpha
= k \frac{3v^2}{(3k-N)^2 + 3v^2} + (N-k)\frac{\frac{3}{4}v^2 + \frac{3}{4}(3k-N)^2}{(3k-N)^2 + 3v^2}
(4) + v\cdot\frac{1}{2}\sqrt{3}\frac{(3k-N)v\sqrt{3}}{(3k-N)^2 + 3v^2}
= \frac{9}{4}k - \frac{1}{4}N - \frac{(3k-N)^3}{(3k-N)^2 + 3v^2}.$$

To find the maximum kurtosis we have to find the minimum possible value of the expression (4). Partial differentiation of (4) $\frac{\partial}{\partial (3k-N)}$ gives

$$\begin{split} \frac{3}{4} - \frac{3(3k-N)^2}{(3k-N)^2 + 3v^2} + \frac{2(3k-N)^4}{\{(3k-N)^2 + 3v^2\}^2} \\ &= \frac{-\frac{1}{4}(3k-N)^4 - \frac{9}{2}v^2(3k-N)^2 + \frac{27}{4}v^4}{\{(3k-N)^2 + 3v^2\}^2} = \frac{-\frac{1}{4}\{(3k-N)^2 + 9v^2\}^2 + \frac{27}{2}v^4}{\{(3k-N)^2 + 3v^2\}^2} \\ &\leq \frac{-\frac{81}{4}v^4 + \frac{27}{2}v^4}{\{(3k-N)^2 + 3v^2\}^2} \leq 0. \end{split}$$

Hence $3N/2\lambda$ for every v, is decreasing with increasing k, so that we have to take the greatest possible value of k. In that case 3k-N is certainly positive and we have to take the smallest possible value of |v| to minimize $3N/2\lambda$. In virtue of the conditions of k and v we have the "extreme" combinations k = N - 1, |v| = 1 and k = N - 2, v = 0. Substituting in (4) gives for λ , respectively, $2(N^2 - 3N + 3)/(N - 1)$ and N. Since those values are equal only for N = 2 or 3, and

$$2\frac{N^2 - 3N + 3}{N - 1} > N$$

if $N \geq 4$, we find for our upper bound

$$\max \beta_2 = \frac{1}{2}\lambda = \frac{N^2 - 3N + 3}{N - 1}.$$

And indeed

$$\max \beta_2 = \max \beta_1^2 + 1.$$

$$\max \beta_{2n} = \frac{(N-1)^{2n+1}+1}{N(N-1)^n}$$

and

$$\max \beta_{2n+1} = \frac{(N-1)\left\{ (N-1)^{2n+2} - 1 \right\}}{N(N-1)^{n+1}}.$$

Their proof will be published shortly in the Dutch mathematics and physics periodical Simon Stevin.

² After writing this paper, the author derived the more general formulae: