ON THE TRANSLATION PARAMETER PROBLEM FOR
DISCRETE VARIABLES!

By Davip BLACKWELL
Stanford University

Summary. For any chance variable z = (z1, - - - , ) having known distri-
bution, the translation parameter estimation problem is to estimate an un-
known constant h, having observed y = (z; + h, --- , 2» + h). Extending
the work of Pitman [2], Girshick and Savage [1] have, for any loss function de-
pending only on the error of estimate, described an estimate whose risk is a
constant R independent of %, and have shown that under certain hypotheses
their estimate is minimax. We investigate whether the Girshick-Savage estimate
is admissible, i.e., whether it is impossible to find an estimate with risk R(h) <
R for all & and actual inequality for some . We consider only bounded discrete
variables z, and show that, if all values of z have all integer coordinates and if
the loss f(d) from an error d is, for instance, strictly convex and assumes its
minimum value, the Girshick-Savage estimate is admissible. Two examples in
which the Girshick-Savage estimate is not admissible are given.

1. Preliminaries. Let r;, .-, be distinet points in the hyperplane
>i.iz; = 0 in Euclidean N-space Ry ,let s;;, 4 =1, -+ ,kyj=1,--, m,
be real numbers with s;; % s;;, whenever j # j/, and define v;; = r; + esi;,
where e = (1,1, --- , 1). Let @; > 0, p;; > 0 be numbers such that > ; a; = 1,
D 71 pi; = 1for each 7, and let z be a chance variable such that P{z = v;;} =
ap;j . Clearly any N-dimensional chance variable x assuming only a finite
number of values can be represented in this way. The translation parameter
estimation problem is to estimate the value of an unknown constant &, having
observed y = z -+ ¢h. An estimate for h is then a real valued function #(y), de-
fined for all vectorsy = r; + es,2 =1, -+ , k, —o < s < o, specifying the
estimated value of & as a function of the observation y. We shall suppose that
the loss to the statistician depends only on the error d = t(x 4+ eh) — h, and is
given by a nonnegative function f(d) defined for all real d. For a given A, the
risk, 1.e., the expected loss, from an estimate ¢ is

R(h) = E ;i pijflt(ws; + eh) — hl. '

)

For any estimate ¢, the quantity y — e/(y) = u(y) can be considered as an
estimate of the value of z; in terms of u, the absolute value of the erroris | d | =
N7*|u(y) — z|, where | v | denotes the length of the vector ». In terms of u,
the Girshick-Savage estimate becomes an extremely natural one. If we repre-
sent x as r 4 s, where the sum of the components of ris0, — o < s < o, the
observation of y determines r, and gives certain information about s which it is
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hard to utilize unless one has a priori ideas about k. The Girshick-Savage esti-
mate simply ignores whatever information y contains about s, and makes « a
function of » only. If we are given r = r;, the conditional distribution of z is
P{x = r; + esi;} = pij, and, for u(r;) = r; 4+ ew, the conditional risk is Q;(w) =
> ipaif(si; — w). If inf, Q:(w) = R;, and W, is the set of real numbers w with
Q:(w) = R;, the Girshick-Savage estimates are the estimates u(r) such that
n(r;) = r; + ew;, with w; ¢ W; . The risk from any Girshick-Savage estimate
is R = D> a,R; for all h.

Any estimate u(y) is specified by & real functions z,(s) , --- , 2(s): when
y =1+ es, u(y) = r; + ez:(s); and conversely every set of k functions deter-
mines an estimate. The corresponding estimate of his t(y) = s — z:(s). The risk
is

R = ; o é P f[8i; — zi(si; + h)1.

Thus formulated, the N-dimensional estimation problem is simply a collection
of k one-dimensional problems, with the particular one-dimensional problem to
be faced by the statistician selected according to the probabilities a; , -+ , oz .
This fact enables us to restrict attention largely to one-dimensional problems.

2. The main result. We have seen that the risk from a Girshick-Savage esti-
mate is a constant R independent of h. A question raised by Girshick and Savage
is whether their estimate is admissible, i.e., whether it is impossible to find an-
other estimate with R(h) < R with actual inequality for some .. The theorem
of this section gives some conditions under which the Girshick-Savage estimate
is admissible; essentially the result is that, for bounded variables z for which
all s;; are integers, and strictly convex loss functions f(d) with f(d) — « as
d — d=, the estimate is admissible. Some cases in which the estimate is not
admissible are described in the next section. The main result is a consequence of
the following lemma, an analogue of which has been obtained by Lehmann [oral
communication] for normally distributed 2’s.

Lemma. If all s;; are integers and if f(d) is continuous and such that (a) cach
Qi(w) = X_; piif(sij — w) assumes its minimum R; at a unique potnt w; , 1.e., the
Girshick-Savage estimate exists and is unique, and (b) Qi(d,) — R; as n - »

implies d, — w; , then for any estimate z(s), - -+, z:(s) we have
B k o0
Jim 30 [R(M) — B = 2w 3 [Qn(9)] — R,
B——x0

where h, s assume only integer values.

Proor. Since the hypothesis for the N-dimensional problem implies the hy-
pothesis for each of its one-dimensional components, and the conclusion for
each component implies the conclusion for the entire problem, it is sufficient to
prove the theorem in the one-dimensional case. Suppose, then, that z is one-
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m

dimensional, integer-valued, and bounded, say Plz = j} = p;, 2% p;, = 1,
min Q(w) = Q(w,) = R, where Q(w) = > ., p;f(j — w), and let 2, be any esti-
mate defined for all integers h. We have

R = 3 035G — zen).

—m

For any integers 4, B with 4 < B, we have

B+m min(m,i—4)

;R(h>= > > pJli— ozl

i=A—m j=max(—m,i—B)

For B — A > 2m,

3 At-m—1 i—A Btm m B m
M 2ZRMW= 2 2+ 2 4+ 2 2 pifli—al
A {=A~—m j=s—m 1=B—m+t1 j=i(—8 i=A4+m j=—m
Iror any set of 2m numbers (u_, , -+, i) = u, define
m=-1
g = 2 Z piflj — wi,

z-=—-—m J=—m

m—1 m

2 2 pifli = i,

i=—m j=i+1

so that g(u) + G(u) = >_121,.Q(u,). Then

Gw)

B B—m
) 2R = g(Pacn) + GPon) + 20 Q)
where, for any integer @, P, = (2o, * -, Zas2n—1). (2) may also be written as
B ’ B+m
3) 2R = gPamw) = ¢(Prons) + 2. Q)
or
B B+m
) EAj R(h) = ~G(Pa-n) — g(Paor) + ?j Q).
Since g(P) and G(P) are nonnegative for all P,
B—m B B4+m
2 Q6 < 2 R0 < X QG
s0 that
B—m B+m
> Q@) — B) —2mk < Z B®) — R) < 2 (QG) — R) + 2mk.
A+tm

Now Q(z;) > R for all 4. If >l [Q(z;) — R} diverges, then it follows that

lim Z [R(h) — R] = =.1If Z [@(z:) — R] converges, then, as ¢ — =+ =, ((z;)

A-—x 4
B
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— R, 2, — wy,and P; — (w, wy, -+, wy) = P* Since g is continuous, as
A — —w, B— o, we have g(Ps—m) — g(P*), g(Pp-ms1) — g(P*), so that
(3) yields

Jlim Z‘, (R®) ~ B) = 2 [Q(z) ~ Rl
B—owo
TuroreM 1. Under the same hypotheses as those of the Lemma, if z1(s), + - - , zx(s)
1s any esttmate with R(h) < R for all integers h, then R(h) = R for all h, and z;(s) =
w; for all integers s and all © = 1, ---, k: the estimate is the Girshick-Savage

estimate for inlegers.
Proor. According to the Lemma, we have

> 1RO ~ Rl Z w Y Q) — R,

g=—00

so that both sides are zero, and R(h) = R for all h, 2;(s) = w; for all s.

When the s;; are restricted to be integral, h may as well also be so restricted,
since the statistician can, by considering y* = r; + ¢[s] when y = r; 4+ es,
reduce the problem to one where h is replaced by [h]. For completeness, however,
we prove

TaEOREM 2. Under the same hypotheses as those of the Lemma, the Girshick-
Savage estimate ts admisstble.

Proor. Let 2,(s), - -, z:(s) be any estimate for which R(h) < R forall h.
(s, h now assume all real values.) For any he, consider the estimate z}(s) =
zi(ho + s). Then R*(h) = R(hs + h ) < R for all h. In particular, R*(r) < R
for all integral h, so that, by Theorem 1, R*(k) = R, 2%(s) = w; for all integers
h, s, and all z. Choosing h = Oand s = 0 yields R(hy) = R, 2:(ho) = w; for all
1:21(s), - - -, 2x(8) is the Girshick-Savage estimate.

Remark. The above results are closely related to

TuroreM 3. Let S be any closed bounded strictly convex subset of N-space which
1s tangent to the line x; = --- = xy at the point (w, ---, w) = P* The only
sequence of numbers {z,}, — o < n < oo, for which each point P, = (2,31, -,
Zoyn) ES IS 2 = W.

Thus, if f(d) is strictly convex and f(d) — © as d — 2= ,and p; > 0, |z | < m,
the set = pif(u; — ) < min X_p;f(w — %) is a closed bounded strictly convex

subset of Rany1 , tangent to the line u_,, = -+ = wu, at the point (wo, wo, - -,
wo), where min ', pif(w — ) occurs at w, . The theorem then asserts that the

only estimate {z,} with R(h) < R for all h is the Girshick-Savage estimate.
The proof of this theorem follows the pattern of the proof of the lemma but is
simpler in detail, as follows.

Iet L(z) = Zl ax; = 0be a tangent plane to S at P* which contains theline
= -+ =zy;say L) <O0forzeS.ForB — 4 > N,

B+N min(¥N,i—4) N-—1 N—1

; LPY =2 2 2, a Zl:bizA-H - Zl: bizptrit

A+1 max(1,i—B)

M(PA) - M(PB+1))

i
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where b; = Y ta;and M(z) = 27 " bw:, using the fact that X+ aw; = 0 con-
tains the point (1, - - - , 1), so that )Y a; = 0. If all points Pj & S, then L(Py)
> 0 for all h. Since M is bounded on S, D2 L(P;) converges and, as h — == ,
L(P;) — 0 and P; — P*. Then

> L) = lim (M(PJ) — M(PD} =0, L) =0

A-——0
B0

for all h, so that P, = P* for all h.

3. Examples. We present here two one-dimensional examples in which the
Girshick-Savage estimate fails to be admissible.

ExampLE 1. & = =1, each with probability 4, f(d) = |d]| for |d| > 1,
f(d) = 1for|d]| > 1. We have Q(w) = if(w — 1) + 3f(w + 1), min Q(w) =

2 = Q(— 1) = Q(1). Thus there are two Girshick-Savage estimates: z = —1
and z = 1, each yielding the constant risk B = %. (The corresponding estimates
for h when y = n is observed are n + 1 and n — 1.) The estimate z, = —1 for

n < 0,2z, = 1forn > 0 (i.e., for h, estimaten + 1ifn <0,andn — 1if n > 0),
which is not a Girshick-Savage estimate, has R(h) = 3 forh % —1,0,R(—1) =
R(0) = 0. One can even be frivolous at a single point, setting z, = —1 forn <
0,2, = 1forn > 0, 2 = 7, and still obtain R(h) = % for h 5~ 0, R(0) = 0,
an improvement over the constant risk 1. The extension of either estimate to all
h can be made, for instance by defining z(y) = z(,; , where [y] denotes the largest
integer not exceeding .

ExampLe 2. In Example 1, the pathology occurred in the loss function.
We now set f(d) = d’, so that the expected loss is simply the mean square error,
and exhibit an 2 for which the Girshick-Savage estimate is not admissible.
Since, for any z, f(d) = d* will satisfy the hypotheses of Theorem 1, we must go
beyond bounded, integer-valued variables.

Let ¢g = —1,e; > Ofori =1, ---, k be k + 1 rationally incommensurable
numbers (i.e., the only integers n; such that D s =0aren; = 0,7 = o--
k),andlet P{x = — e;} = p;, with the p, chosen so that > p: = 1, p;e; = con-
stant forz = 1, ---, k, and D_& p:e; = 0. For given e, , these requirements de-
termine po , - -+ , pr uniquely, and p; > Oforz = 0, - - - , k. Let S be the additive
group determined by €, - -+, e, i.e., the set of all numbers representable as
D nies, whereno , - -+, m are integers. Thenfor 2 ¢ S, all valuesof 2 + h ¢ S.

We shall define an estimate z(s) for s e S for which R(h) < R for all h e S.
The extension of z to all real numbers will be straightforward. For any z(s),
the inequality R(h) < R becomes

k k
Z% piles + 2(h — )]’ < 5__; pi€s
that is,

13 kA
2 il = e) < =2 piesz(h — e),
=0 i==()

Lo —
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or

1[ . 1 3 2(h — &) lkﬁ
-z—[a(h—?o)‘l‘—kzl:-—e*—-]s_f:’(h”‘@o)"‘E;d(h‘“ei).

Ifs = D % o nes , we define z(s) = O unless dtn,=0.1f D kni=0,we represent
s by the vector » = (ny, -+, n). Let 41, 42, - - - be independent vector chance
variables, with P(y = §;) = ]{ ,J =1, k;7=1,2,--- (where §; is the vector

with k£ components of which the jth is 1 and the others are all 0’s). Let 2(v) be
the probability that 3, + -+ + yx = v, where N = D_% n;, 2(0) = 1. Then
2@) = 0if any n; < 0, and 20(») = NI/(ny! - -+ ne!kY) if all n; > 0. We shall

define 2(») = an%(v), and choose nonnegative numbers ay so as to satisfy
R(h) < R. This inequality becomes, for » % 0,

1 . 2 k 2 - 61,
®  a|aade + SR 00 < a0,

where h — ¢p = D b ngi, v = (ng, -, ), 2n; =N + 1, using the fact
that z2,(v) = ; D k2 — ;) for v 5% 0. For v = 0, the requirement is 3ay* <
a0, 1.e., ap < 2. Since 2o(v) = Owhen Q_& n; < 0,v # 0, (5) is satisfied for N < 0,

v # 0. For N > 0, let ivx = max z(). This maximum occurs for the
b LH——
choice of ny, -+, m , unique except for order, for which |n;, — n;| < 1

for all <, 7, and Stirling’s formula yields N%(i\:'“) — ¢y as N — o, where ¢ is
a positive constant. Then there is a ¢ > 0 withwy < ¢ N*™ for N = 1,2, - .

Since z(v) = 1 Y 20 — 8;) and 2 > 0 for all v, we have z(x — 8;) < kz(v).

F
Thus for nondecreasing ay , the left member of (5) is less than day.,.2g (¢v),
where d is a positive constant (for fixed & and e¢;). Thus (5) is satisfied if

dazzv+123 (v) . (aN-;;l - aN)zo(v), i.e., if dai,_‘_lzo(y) < ay4y1 — an . Since
2() < ¢ (N + 1) **™® it is sufficient to choose ay such that
(6) a12v+1 S b(aN+l —_— aN) (N + 1)%(1—10)’

where b is a positive constant. If ay = N°,0 < e < L and k > 3, (6) will be
satisfied for sufficiently large N, say N >' N, . Setting ay = 0 for N < N, and
ay = N for N > Njsatisfies (6) for all ¥, with actual inequality for sufficiently
large N.

Thus, for k& > 3, we have defined an estimate z(s) for s ¢ S with B(h) < R
for all h e Sand R(h) < R for at least one h € S, say Ay, where

k
R(h) = Z;, pile: + 2(h — eI



TRANSLATION PARAMETER PROBLEM 399

For any h; € S, let 2:(s) = 2(s + hy). Then Ry(h) = R(h + hi), so that Ri(h) < R
for all & and Ry(ho + hi) < R. Thus for each h* ¢ S there is an estimate 2z« (s)
with Ry+(h) < R for all h, Ry+(h*) < R. Let az be a set of positive numbers with
D hestn = 1, and define 2*(s) = > estinzn(s); since the original z is bounded,
the series converges. Since R(h) is a convex function of z, R*(s) < D_nestnka(s)
for s & S, and 2*(s) is the required estimate.

To extend z* to all real numbers, divide all real numbers into classes s, ,
with ¥; in the same class as y, if and only if y; — y. € S, and choose a repre-
sentative ¢, of each S.. Then every y has a unique representation y = t. + s,
s ¢ S;define 2(y) = 2*(s). Forany h = t, + s,

R(h) = ;ﬂ pies + 2% — e) = R*(s) < R.

Notice that the extension z(y) of 2* is a nonmeasurable (Lebesgue) function of
y. It can be shown that any z(y) with R(h) < R for all & is necessarily non-
measurable; a variation of the method of proof of Theorem 3, evaluating

B
/ L(P») dh instead of Y 4L(P,) over integral h, shows that for any Lebesgue
A4

measurable z(y) with R(h) < R for all h, the set R(h) < R has Lebesgue measure
zero and that, for almost all y, the estimate z(y) = 0, agreeing with the Girshick-
Savage estimate.
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