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€n,o S0 that the error committed by using &,,. instead of €,,, would be in the
safe direction, and that this error becomes already very small for n = 50.
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ON THE ESTIMATION OF CENTRAL INTERVALS WHICH CONTAIN
ASSIGNED PROPORTIONS OF A NORMAL UNIVARIATE POPULATION

By G. E. AuBerT AND Ravpa B. JomNsoN
University of Tennessee and Clemson Agricultural College

Summary. For samples of any given size N > 2 from a normal population,
Wilks [1] has shown how to choose the parameter A, so that the expected cover-
age of the interval £ &= A\,s will be 1 — p. The present paper treats the choice
of the minimal sample size N necessary to effect a certain type of statistical
control on the fluctuation of that coverage about its expected value; a brief
table of such minimal sample sizes is given.

1. Introduction. Let F(y) denote the normal cumulative distribution function

1 v — 2 2
f eI gy,
27 J-w

(1) F(y) =

g

If p is any number in the range 0 < p < 1, factors A\(p) are well known such
that the proportion

) A = F(m 4+ \o) — F(m — \o)

of the probability between 7 &= Ao will equal 1 — p.
If m and ¢ are unknown, it is natural to consider the random variable

(3) A(g, 8;N) = F(@ + Xs) — F(7 — \s),
where § = il yo/N and s = {z: (yi — )Y/ (N — 1)}i.

Obviously A cannot be chosen to guarantee A(f, s; \) = 1 — p. S. S. Wilks
[1] has shown that, for a random sample of size N, the expectation of (3) is

1- D,

if the parameter A is chosen as

(5) x=t,,1/ziz—'\'%—1.
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In (5) t, is such that for Student’s ¢{-distribution of N — 1 degrees of freedom
Pri|t| > t,) = p.

Wilks’ study of the variability of A(7, s; ) was based upon an approximate
consideration of the variance of 4. It is the purpose of this paper to present
more precise results in this latter connection.

Let d;, d. and a be assigned positive numbers satisfying the inequalities
0<1—p—d<1—p+d<1and 0 < @ < 1. It is shown that if \ be
chosen as in (5), the requirement
(6) Pl —p—-di SA@ ;N <1 —p+d 2
places a lower bound on the sample size N. It is clear that if d; and d- are small
and « near unity, (6) places a control on the variability of A(7, s; \) about its
expectation 1 — p. .

TABLE 1
Smallest N for which (6) holds
P 01 05 25 50
a 95 .99 80 95 .99 ' .80 95 99 .80 95 .99
dy ds

.075 | .05 — —| — 24 49 54 128 226 44 108 197
.05 .05 — —| — 43 92 76 174 298 63 144 243
025 | .025 | — —| 65 159 299 . 298 692 1194 | 245 567 975
.035 | .015 | — — | 107 274 510 | 420 1332 2628 | 337 1079 2184
.05 .01 12 27| 196 640 1230 | 813 2991 5983 | 649 2488 4928
.025 | .01 26 64| 226 641 1230 | 907 2993 5983 | 725 2487 4928
.02 .01 37 88| 254 657 1231 | 1025 3015 5982 | 825 2502 4928
.01 .01 |110 319 428 1009 1750 | 1846 4319 7456 | 1507 3540 6084

Methods devised by Wald and Wolfowitz [2] are easily adapted to the ap-
proximate calculation of the probability (6).

Table I presents minimal values of the sample size N to effect the control (6)
for various values of the constants p, d; , d; and «. The indication is clear that
the prediction of probability intervals based upon the estimates i and s from small
samples is not very reliable.

2. The expectation of A and the probability (6). Writing u = (§ — m)/o
and v = s/o, A(7, s; \) becomes

A* . __L_ b 32 d
@) w05 = == [t

It is well known that the variables /N and (N — 1)’ are independently dis-
tributed, the first being normal with zero mean and unit variance and the second
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being chi-square with N — 1 degrees of freedom. One readily derives (Wilks [1])

E(A) = Pr[lt] < x1/]%—1],

where ¢ has Student’s distribution with N — 1 degrees of freedom. Setting this
equal to 1 — p, the choice (5) for'\ is obtained.

To calculate the probability (6), one integrates the joint frequency function
f(u, v) over that portion of the half plane — ©» < u < «,» > 0 on which
1—p—d <£4* <1 — p+ dy. To perform the integration, one proceeds
as in Wald and Wolfowitz [2] where a similar problem is solved. Define two
functions

8) ve = v (w), r=12
by the equations
(9) A*(u7 Ur s >\) =1—p+ (—l)rdf ) r=12,

where A* is defined by (7) and A is given by (5). The functions v,.(u) are monotone
increasing relative to | « |. It follows that

(10) Pr{fl —p—di <A@, ;M) <1 —p+do} = ;E;./_me'*”“’P(u)du,
where
(11) P(u) = Pri(N — oiw) < x* < (N — 1)va(u)},

x’ being distributed as chi-square with N — 1 degrees of freedom.

The formulas (10) and (11) are too unwieldy for much computation. Following
Wald and Wolfowitz [2] again, one can show that a good approximation for
large N is

(12) Pril —p —di < A(@@,5;0) <1 —p+do} XPIN,

the right member being given by (11).

3. Computational procedure. For a given set of values of p, d,, and dz, one
may now tabulate (12) against N by the following steps. Using A as given by
(5), the v, = v,(N?) defined by (9) are found by trial and error from a standard
normal distribution table. Then (11) and (12) give the control probability. One
easily picks out the minimal N for which (6) is satisfied. Tables of the incomplete
gamma, function [3] are available and the authors are in possession of graphs of
the chi-square distribution prepared from these tables by the use of spline
curves. The detail of the graphs is sufficient for three-decimal accuracy in reading
probabilities. For small values of N and values beyond the range of tables, a
variety of standard methods of approximation for (11) were used.

Lower and upper bounds for the interval (10) are easily devised using obvious
approximate quadrature methods. See Wald and Wolfowitz [2] in this connec-
tion. The small values of N in Table I were checked by such a device. The
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authors are confident that the computation was sufficiently accurate to make
the table useful for practical purposes.

4. Generalization. The formulation of the problem discussed above may be
generalized to the case in which the mean m of the distribution (1) depends
linearly upon % sure variables z;%, z, -+, . The N observations are then
N (k + 1)-tuples (y: ; ®a, T2, -+, Ta), 2 = 1,2, +--, N, and the mean has
the form

k
m = a+j=216j(X,-—£,~)

for an arbitrary set of values X;, X, «-+, X) of the sure variables. Referring
to Cramér ([4], pages 551 and 552) for notations and formulas in order to save
space here, one replaces the interval estimate (7 4= As) above by the interval
from R, to R, , where

k
R, = a* + 2 87 (X; — &) + (—1)\*e¥, r=12,
i=1
. _ N+ M
R 7 gy s

k .
M= 14 32— )X - 7).

Ghj=1

and

Here £, is chosen as in (5) except that the degrees of freedom are now N — k — 1.

For this generalization, when N/M is large, the control probability (6) is
approximated by P(M*/N*) where P(u) is given by (11). Organized computa-
tion for this generalization does not seem feasible since the values of the quad-
ratic form M may vary greatly from one application to another.
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