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1. Summary and Introduction. Following the essential steps of the proof of
the Cramér-Rao inequality [1, 2] but avoiding the need to transform coordinates
or to differentiate under integral signs, a lower bound for the variance of estimators
is obtained which is (a) free from regularity assumptions and (b) at least equal
to and in some cases greater than that given by the Cramér-Rao inequality.
The inequality of this paper might also be obtained from Barankin’s general
result’ [3]. Only the simplest case—that of unbiased estimation of a single real
parameter—is considered here but the same idea can be applied to more general
problems of estimation.

2. Lower bound. Let u be a fixed measure on Euclidean n-space X and let
the random vector x = (21, ---, %.) have a probability distribution which is
absolutely continuous with respect to u, with density function f(z, ), where
is a-real parameter belonging to some parameter set A. Define S(a) as follows:

flz, ) > 0, a.e. z in S(a),
flx,a) =0, ae. zin X — S(a).
Let t = t(x) be any unbiased estimator of a, so that for every ain 4,

M [ 4@ @) ds =

X
If a, « + h(h # 0) are any two distinct values in A such that
2) S(a + h) < S(e),

then, writing S for S(a),

ff(:c, @) dp =1, f f,a + h) du = ff(x, ath)dp =1,
s 8t s

Ltf(x,a)du=a, .Ltf(x,a+h)dp=a+h,

so that

fs it — o] Vf(z, ) f@ J,:f(’;)’ ;)f (z, @) Vi@, a) du = 1.

1 This research was supported in part by the Office of Naval Research.
2 But again with some additional restrictions.
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Applying Schwarz’s inequality we obtain the relation

1< fs [t — o'f(z, @) du - fs [f(x’ < 4;}2, ;)f(x’ a)]zf(w, ) du

_ _1[[f@a+ BT ,
= s = {2 50T - )

then (3) can be written in the form

1
4 >,
(4) Va,r(tla)_E(Jla)
Since (4) holds whenever a, a -+ h are any two distinct elements of A satisfying
(2) we obtain the fundamental inequality

(3)

Let

1
(5) Var(t|e) > m ’

where the infimum is taken over all & 5 0 such that (2) is satisfied. It should
be noted that (5) holds without any restriction on f(x, @) and without any
restriction on ¢ other than (1).

It is possible that E(J | «) does not exist (finitely) for any h. With the usual
convention that E(J|a) = «, in this case, (5) is still a valid, though trivial,
inequality. .

In applications u will often be Lebesgue measure on X. It could equally well
be a discrete measure on a countable set of points in X. Furthermore, if the set
where f(z, «) > 0 is independent of a then (2) is trivially satisfied for all & + &
in A.

We shall have occasion to compare (5) with the Cramér-Rao inequality

(6) Var(t| @) > ¥ = yY(a) = a—a& In f(z, o).

1
EWY|a)’
This inequality is usually derived for distributions with range independent of
the parameter and under certain regularity conditions on both f(z, a) and the

unbiased estimator ¢.

3. Examples.
Example 1. Unbiased estimation of the mean of a normal distribution based on a

random sample of size n. Here
- —_ — 2 c—ar) 2
f(x, a) — (211') (n/2)o_ e (1/202)2% ., (zi—a) ,
where ¢ is a positive constant, and

1 — e k) 2= (2 —a) 2
J = = {e (/6227 Uzi—a—h)i—(z;—a)?] __ 1} ¢ k? 2w 1},

h2

_n
o’k?
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where we have set u = Y ri(z: — @)/(eA/n), = h\/n/o # 0.

When the mean is @, u is normally distributed with mean 0 and variance 1, and
we find after a simple computation that

EWJ | o) = n( — 1)/,

7
@ inf E(J | &) = lim (e — 1)/(D)] = n/e’ = [EW| &)].

Hence if ¢ is any unbiased estimator of « it follows from (5) that
(8) Var(t| @) > o*/n.

Since the sample mean Z is an unbiased estimator of & with Var(z |a) = ¢*/n,
it follows that # has minimum variance in the class of all unbiased estimators

of a. '
In this example the Cramér-Rao inequality (6) yields precisely the same

bound (8).
Corresponding results hold for the unbiased estimation of the variance when
the mean is known. Both (5) and (6) yield the inequality

Var(t | «) > 2a°/n,

where « is the unknown variance. The equality sign holds for
n
t=n" % (o — m)’,
tmal

where m is the mean of the normal population.
Example 2. Unbiased estimation of the standard deviation of a normal population

with known mean. Here

F@, @) = (@r) "G st
Setting k = h/a we find that for —1 < k < /2 — 1, k = 0,
) E(J|a) = {(1 + k)7 — k@2 + B)]™™ — 1}/(F).

In this case also, limywE(J | @) = 2n/d’ = E(Y’| ). But the minimum value
of E(J | @) is not approached in the neighborhood of » = k = 0, and the in-
equality (5) is sharper than (6). We shall consider only the case n = 2. Equation
(9) then becomes

E(J |a) = (p + 1)/[a’"@2 — p7),

where we have set p = 1 + k and 0 < p < 4/2. We have for p =
.8393, 1/E(J | @) = .2698 o, so that by (5)

1

Var (t|a) > 2698 o > 26" = T
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It is interesting to note that the unbiased estimator

-V T'(3n)
L= VI i+ D] +1) 4/ 2 (i =

[ sy ‘]’

o [fl- - 1] — 27324

™

has variance
which for n = 2 becomes

But it can be shown using results of Lehmann and Scheffé [4], or of Hoel [5],
which were derived from Blackwell’s theorem on conditional expectation [6],
that no other unbiased estimator can have smaller variance than ¢. Thus (5)
does not give the greatest lower bound in this case.

Various examples. of the application of (5) can be given where S(a) is not a
constant and where the Cramér-Rao formula is invalid (see for example Cramér
[1], p. 485). It should be noted, however, that in many of the standard problems
of this type stronger results can be obtained by other methods.

Another class of estimation problems where (5) may be applied occurs if the
parameter space is discrete. Again in this case the Cramér-Rao formula does
not hold. An example of this type has been given by Chapman ([7], pp. 149-150).
Other applications of this type and some results related to this paper were
-obtained recently by Hammersley [8].

4. General comparison with the Cramér-Rao inequality. Let

2
w0 -3 - [l o en]

then
E(J|a) = E(J | a).

Hence in the fundamental inequality (5) we can replace J by J. But from (10)
it is clear that

2
;1.1-?01 J(e, h) = l:;‘)% In f(x, a)] = ¢*(a)

whenever the latter exists.

Assuming now the usual regularity conditions under which the Cramér-Rao
lower bound is derived, that S(«) is independent of « and that f(z, ) is suffi-
ciently regular that we may pass to the limit inside the integral sign,

1) EW'|e) = E[}ig; | a)] = lim E(J|e) > inf E(J | o) = inf B(J | o),
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the infimum being taken over admissible values of h. It follows that the ire-
quality (5) s at least as sharp as that given by the Cramér-Rao formula (6).

On the other hand, when z = (z,, - - , x,) is a random sample from a regular
distribution, and when E(¥’ | a)* < «, then for any fized h = 0, there exists
an ny such that for n > ng

(12) EW' |a) < E(J | ).

Without loss of generality assume E(J | @) < «. Letting g(¢, @) denote the
density function of a single x; and » the one-dimensional measure which generates
u, it is easily verified that

_1{[ [ dta+h ]"_ )
E(Jla)—hz([xwdv 1 .
By hypothesis, except on a set of measure 0,

gt @ + B) = g(t, ) +h§~i

Hence

; a< ah)< a+h
a=a(h)
2 2
gt a+h) , _ ag - (gg_ )
(13) x g @) & =1+ 2h -[x 0t |a=a(n) &+ h fxg 30 |a=a(h) &

Denoting the last integral of the right hand side of (13) by R(e, k) and noting
that the relation

Lg(t, @) dv =1

may be differentiated under the integral sign so that the middle term vanishes,
it follows that

(14 E(J|e)=LF "23(,:’;’ MI" = 1 R(e, b) + tn(n — DF R, B).

On the other hand, from (11) and (14),
(15) EW| «) = nR(e, 0).

In order that different parameters may be distinguishable we must have

dg

0 |a=a(n)
for a set of positive measure on the ¢-axis, and hence R(e, k) > 0. From this and
the fact that R(e, 0) is independent of n, (12) follows at once, for sufficiently
large n, from (14) and (15).
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