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1. Introduction. In an investigation of the ratio of the mean square successive
difference to the mean square difference in random samples from a normal uni-
verse with mean zero, J. D. Williams [4] proved the rather surprising fact that
any moment of this ratio is equal to the corresponding moment of the numerator
divided by that of the denominator. Later Tjallings Koopmans [2] and John
von Neumann [3] showed independently that this ratio and its denominator are
stochastically independent. From this, Williams’ theorem is an immediate con-
sequence. In this paper, we determine a necessary and sufficient condition for
the stochastic independence of a ratio and its denominator. We then use this
condition in our study of certain ratios of algebraic forms.

2. Stochastic independence of a ratio and its denominator. We prove the
following theorem for the continuous type distribution. Consider two one-di-
mensional random variables « and y and their probability density function
g(z,y). Let P(y £ 0) = 0. Assume the moment generating function, M (u,t) =
Elexp (ux + ty)], exists for —T < u,t < T, T > 0. The theorem is as follows.

TrareorEM 1. Under the conditions stated, in order that y and r = x/y be sto-
chastically independent, it s necessary and sufficient that

8*M (0, 0)
*M©0,1) _ auk 9"M(0, t)
auk 9 M(0, 0) otk
otk

fork =0,1,2,--.

Proor or NEcessiTy. If f(r, y) is the probability density function of the
variables r and y, it is well known that a necessary and sufficient condition for
the independence of the random variables r and y is that f(r,y) = fi(r)f2(y),
where fi(r) and f»(y) are the marginal density functions of r and y respectively.
Hence, since x = ry,

M (u,t) = Elexp (ury + ty)l;

or
M(ut) = f f exp(ury + ty)fi(r)f2(y)drdy.
By hypothesis, the moments of z of order % exist; so

k o o
: ]gg‘)’ ! = [ m/; " (ry)* exp (ty)fi()fa(y)dr dy.
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Finally,
"M (0, t ® ®
-—3@(7,—) = f_ rfu(r)dr- [ y* exp (ty)fay)dy,
fork =0,1,2,---.If we set ¢t = 0, we see that f ™fi(r)dr exists, since it
is equal to the quotient of the kth moments of x and y,
8" M (0, 0)
_ Juk
K= wueo
at*
The hypothesis precludes the moments of y being zero. We also note that
k
M 0 t
_[ Y exp (t)filydy = 5 )
consequently
O MO, 1) _ K 3" M (0, t)
ok T o
fork =0,1,2, --- ’
Proor oF surriciENcy. Consider the identity
MO, 8 _ K *M(0, ¢
ok T e

(2.1) [ [ a* exp (ty)g(x,y)dedy = K, [ f_ " exp (ty)g(x,y)dzr dy.

Since all the moments of z and ¥ exist, we may differentiate p times with respect
to ¢t under the integral signs. Then if we set ¢ = 0,

f.wf_w Py’g(ay)dedy = K"[ [ Y 7g(ay)dz dy,

forp = 0,1, 2, . Although ¢ has been restricted to the range —~T < ¢ < T,
we may extend that range to — o < ¢ < T and still have the existence of M (u,t).
The condition that P(y < 0) = 0 further permits us to integrate (2.1) p 2k
times under the integral signs as shown below.

[:[:[i[:' oo [‘2 a* exp (hy)g(z, y) ﬁ dtidx dy
= K /_:f.:/_if_: tz?/ exp (t1y)g(z,y) Hdt,dxdy,

or

o LLey

’

<2 g(xy)dedy = Ko f f Y ' g(x,y)dx dy,
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forp’ = 1,2,3, +++ , k. These two expressions may be written
E@"Y") = KGEG™™)
fork=0,1,2,«-candm = =k, -+, —=1,0,1,2, -+ . If m = —F, then

(6)]-=
s =[5
o[ ][] 20

fork=0,1,2 ---andm = =k, -+, —1,0, 1,2, -+ . This could also be
rewritten as

Thus

or

E(™) = E¢Y)-E@Y,
fork=0,1,2,---and h = 0, 1,2, - - . This is sufficient to insure stochastic
independence of r and y; thus the proof is complete.

3. Ratios of linear forms in gamma variables. Let the independent random
variables z; have the gamma density functions

1 ()t %
5 = (T + D@ @ (-3)  ose<=
0, elsewhere,
where ¢; > —1 and d; > 0, for j 7= 1,2, .-, n. Construct the two real linear

forms L; = Z ajriand Ly = Z bjr;, b; > 0. Let L, and L, be linearly inde-

pendent; thus their ratio will not be a mere constant.
TueoreEM 2. Under the conditions stated, a necessary and sufficient condition
that L, and Ly/L. be stochastically independent s that

bidi = bedy = <+ = bpdn

Proor. Our proof consists in showing, by the use of Theorem 1, that if some
of the bd values are distinct, the variance of L;/L. is equal to zero. This fact
further implies that the ratio is a constant, and hence the necessity of the
condition is proved by contradiction. For the sufficiency, we demonstrate that
the partial derivatives of the moment generating function Elexp (uL; + iL,)]
satisfy the condition of Theorem 1. However in interest of conservation of paper,
a referee’ has suggested that upon setting uf = z;/d; , von Neumann’s argument
[3] may be made to complete the proof.

1 We take this opportunity to thank the Referee for this and other suggestions.
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An interesting consequence of Theorem 2 is the following corollary. Let
@1 = X’AX and @Q; = X’'BX be two real symmetric quadratic forms in n ran-
dom values of a variable normally distributed with mean zero. We restrict Q.
to be nonnegative (or nonpositive). Let AB = BA. It is known ([1], p. 25) that
there then exists an orthogonal matrix C such that simultaneously C’AC and
C’'BC are diagonal matrices formed by the characteristic numbers a; of A and
b; of B respectively. Let the rank of AB equal the rank of A. Thus if b; = 0,
the corresponding a; = 0. Further let @, and Q. be linearly independent.

CoROLLARY. If the above conditions are satisfied, a necessary and sufficient con-
dition that Qs and Q,/Q: be stochastically independent is that B = bB, where b is
a real nonzero constant.

This corollary is essentially the theorem suggested by von Neumann’s orig-
inal argument.

4. Ratios of linear forms.
TaEOREM 3. Let x have a continuous distribution such that m(t) = Elexp(iz)]

exists for —T <t < T, T > 0. Let the real linear forms L, = Z ax; and L, =
1

> x;, in n random values of x, be linearly independent. Provided P(x < 0) =
1

0[Pz = 0) = 0], a necessary and sufficient condition for L, and L,/L, to be sto-
chastically independent is that x [—x] have a gamma distribution.

Proor oF sUFFICIENCY. We use Theorem 2. If z has a gamma distribution
and the set x;, #3, - -+ , Z» 1s a random sample, then d; = dy = -+ = d,. We
also note that b; = by = -+ = b, = 1. Hence bidy = bodz = -+ = b.d,. This
implies that L, and L;/L, are stochastically independent.

PROOF OF NECESSITY. Write

M(u, t) = Elexp(uL, + tLy)],

= I:I m(a;ju + 1).

Since the conditions of Theorem 1 are satisfied, the stochastic independence of
L, and L,/L, implies

oFM©O,t) . 9*M(0, 0 B
(4.1) E = K, EY , k=20,1,2, .
Using this condition for k¥ = 1 we find
(4.2) ' zl: a; = nK;.

For k = 2, (4.1) becomes
as (2 &) " @lmOI™ + (2 T acts) b OFm™
= K, {nlm”" O)Nm®I"™ + nln — 1)[m’@)FIm@]" "}
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We now show that this identity implies that
(4.4) [m” Olm@]*™ = clm’ ()] Im(®)]",
where

" mO)mO)]"

¢ =
[m' (0)]*[m(0)]"~*
To do this we assume (4.4) is not true. That is, we assume m” (£)[m(t)]*" and
[m @) [m(®)]"* to be linearly independent. By considering the coefficients of
the linearly independent functions in (4.3), we find

n

Za? = nkK,

1

and i .

2 E a;a; = n(n - 1)K2.
i<J

Adding these two equations we have
n 2
(Z a,-) = 7’&2K2.
1

This result with (4.2) implies that K} = K, . However K; = E[L/Ls) and K; =
E[(Ly/L,)*; so the variance of the ratio must equal zero. This requires the
ratio to equal a constant; that is, Ky = L,/L,. However this is contrary to
the hypothesis that L; and L. be linearly independent. Thus (4.4) must be an
identity.

We have now found that the stochastic independence of L, and L;/L. imposes
the restriction

m” (t) m(t) = c[m'@)]°

on the moment generating function of the distribution from which the samples
are drawn. Since m(¢) is a moment generating function, m(0) = 1, m’(0) = E(x),
and m”(0) = E(z*). Moreover, with a continuous distribution, E(z*) > [E(x)]?
and hence ¢ > 1. Accordingly, we can say that (4.1) for k = 1, 2 requires m(t)
to be the unique solution to the above differential equation with the given
boundary condition m(0) = 1. That is,

m(t) = (1 — b)Y, c> 1,

where b is an arbitrary constant. Hence (4.1) for k¥ = 1, 2 restricts us to moment
generating functions of the gamma type. It might be urged that (4.1) for k =
3,4, 5 +-- could further restrict our solution. But this can not be the case since
we proved the sufficiency of the gamma distribution for the stochastic inde-
pendence of L, and L;/L,. That is, M(u,t) must satisfy (4.1) if m() =
Elexp (tr)], where z has a gamma distribution. This completes the proof of the
necessity of the condition.
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