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quotient of ranges in samples from a rectangular population,” Jour. Am. Stat.
Assn., Vol. 46 (1951), pp. 502-507), who also gives the correct density of the
ratio for R 2 1. The correct cumulative distribution for R = 1 is

1— R—n,{ Rnyni(ny — 1) _ ni(m — 1)(ny — 1)
(m4+n—1m+n—-2 (Mt n)m+n—1)
i

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Blacksburg meeting of the Institute; March 19-21, 19568)

1. On the Approximation of Sampling Distributions by Punch Card Methods.
CarL F. Kossack anp Lester L. Heums, Purdue University.

This paper presents a procedure for obtaining empirical distributions, by punch card
methods, of statistics for which the exact distribution or a usable approximation has not
been found. The mechanization of random sampling of a univariate population has been
described and extended to random sampling of a correlated multivariate population whose
covariance matrix is given. This procedure has been applied to Wald’s classification statistic
in the univariate case, and the results noted.

2. Resolvable Incomplete Block Designs with Two Replications. R. C. Bosk
AND K. R. NaIr, University of North Carolina.

Incomplete block designs in which the blocks can be grouped in such a way that each
group contains a complete replication may be called resolvable designs. They are useful
from the point of view of recovery of inter-block information. It is therefore important to
investigate resolvable designs involving a few replications. In this paper we consider a
class of resolvable designs with two replications, which contains as a special case the well
known square and rectangular lattices with two replications. Given a symmetrical balanced
incomplete block design with u treatments, and r replications in which each pair occurs A
times, we can use the incidence matrix (n;;) of this design to form a design of one class in
the following way. Take a u X u square scheme, and in the cell (i, j) put = new treatments
when n;; = 1, and y new treatments when n;; = 0. The total number of treatments ob-
tained in this way is v = u[rz + (u — r)y]. The design is now constructed by taking the
rows of the scheme for the blocks of the first replication, and the columns of the scheme
for the blocks of the second replication. It has been shown that both the intra- and inter-
block analysis can be carried out in a simple manner. The necessary formulae have been
given, and the computational procedure illustrated by working out a numerical example.

3. Rank Analysis of Incomplete Block Designs. I. The Method of Paired
Comparisons. R. A. BrabpLey anp M. E. Terry, Virginia Polytechnic
Institute.

True preferences or ratings =i, ++- , 7, 2;5, mw = 1, are assumed to exist for ¢
treatments in the uth of g groups of experimental data in an experiment involving paired
comparisons. For the uth group, the probability that treatment i is ‘“better’’ than treatment
j when they appear in a pair is postulated to be miu/(miu + 7ju).

Three tests of hypotheses are available and estimates of the treatment ratings may be
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obtained. The tests use likelihood ratio statistics to test (a) Ho : miw = 1/t, against H, :
miw = w; for all u; (b) Hy : miw == 1/t, against H; : m;u # 1/t; and (¢) Hy : miu = = for all
u, against Hy : w;y 3 m .

Small-sample distributions with tables are available for tests (a) and (b). In all three
tests limiting distributions are shown to be in the form of chi-square.

4. Multiple Regression with a Quantal Response. D. B. Duncan anp R. C.
RuobEs, Virginia Polytechnic Institute.

The problem considered is that of fitting a maximum likelihood multiple regression
equation to data in which the response is quantal, the probit transformation is appropriate
and the number, 7, of independent regression variates is not small.

Iterative methods, for example the Bliss-Fisher method, are available, but these have
been developed mainly for the case r = 1 and rapidly become impractical for cases r > 2.

A method is developed based on (i) the approximation of the weighted deviations of the
working probits from the provisional probits by linear functions of the provisional probits
and (ii) the replacement of the independent z variates throughout most of the procedure
by a linear function of them, termed a composite regression variate. These devices lead to
a simple procedure and result in an estimated 70 to 909 saving in work.

5. Rank Analysis of Incomplete Block Designs. II. The Method for Blocks of
Three. (Preliminary Report.) R. A. BrRapLEY AND M. E. TERRY, Virginia
Polytechnic Institute.

The extensions of ‘“‘Rank analysis of incomplete block designs. I. The method of paired
comparisons,’’ Abstract No. 3 above, to blocks of size three are presented. As before, true
preferences or ratings mi, , -++ , e, 251 miuw = 1 are assumed to exist for ¢ treatments
in the uth of g groups. For the uth group the probability that treatment 7 obtains top rank-
ing in the presence of treatments j and k is miu/(msu + mju + mku) and the probability that
treatment j obtains rank 2, given that ¢ had rank 1, i mju/(7ju + mku).

The three test of hypotheses listed in the first paper are again developed. Tables are
under preparation but are not yet available or complete.

6. Limit Theorems Associated with Variants of the von Mises Statistic. M.
RosENBLATT, University of Chicago.

A multidimensional analogue of the von Mises statistic is considered for the case of
sampling from a multidimensional uniform distribution. The limiting distribution of the
statistic is shown to be that of a weighted sum of independent chi-square random variables
with one degree of freedom. The weights are the eigenvalues of a positive definite symmetric
function. A modified statistic of the von Mises type useful in setting up a two-sample test
is shown to have the same limiting distribution, under the null hypothesis (both samples
come from the same population with a continuous distribution function) as that of the
one-dimensional von Mises statistic. The paper makes use of elements of the theory of
stochastic processes.

7. A Modification of Schwarz’s Inequality with Applications to Distributions.
Sicerrt Moricuri, University of North Carolina and University of Tokyo.

Let ®(t) be a function of bounded variation in the closed interval [a, b] and continuous
at both ends. Then for any nondecreasing function z(t) belonging to L.(a, b), and summable



ABSTRACTS 301

b 3

b i o _
z(t) do(t) < {f z(t)? dt} {f &(t)? dt} , where ¢(t) is the right-hand

derivative of the ‘‘greatest convex minorant’’ of ®(t). This is proved and necessary and
sufficient conditions for the equality to hold are also given. Several examples of application
to distribution problems in statistics are discussed.

with respect to ®, f

a

8. Confidence Intervals of Fixed Geometric Size for Scale Parameters. (Pre-
liminary Report.) LioNEL WEIss, University of Virginia.

A procedure is given for obtaining confidence intervals for parameters of scale with
confidence coefficient no less than 8 and length no greater than A, where 8 is any number
between 0 and 1 and A is any positive number. The procedure uses two samples, the size
of the second sample being a chance variable. It seems certain that there are other pro-
cedures for the same purpose yielding a smaller expected number of observations, but
even in using the method given the problem of fixing the size of the first sample to mini-
mize the expected number of observations is tedious computationally. A comparison is
suggested between the expected number of observations and the number of observations
required when an upper bound for the scale parameter is known and a single sample is
used to get a confidence interval of at least a given confidence coefficient and of length
bounded by a given number.

9. On Lower Bounds of Powers of Certain Multivariate Tests. S. N. Roy,
University of North Carolina.

For multivariate normal populations tests of hypotheses were earlier offered for (i)
equality of two covariance matrices; (ii) independence of two set of variates, and (iii) the
analysis of variance situation. Lower bounds of the powers of such tests are now discussed.
Here, for simplicity, under (iii) is considered the hypothesis of equality of respective
means for k p-variate populations with a common covariance matrix =, . Let S; denote
the “‘covariance matrix of the sample means,” S: the “pooled covariance matrix of sample
error,” Z; the corresponding population matrix of means, H, the hypothesis (iii), and H an
alternative. Then the critical region of the test at a level « is: 6, = 8o, where 6, is given by
P(8; = 60 | Ho) = o and 6, is the largest characteristic root of the matrix 8,83 (positive
semidefinite of rank ¢ = min (p, ¥ — 1), a.e.). For the power we have the following lower
bound:

q
P, > 6|H) >1 — II {1 — P (noncentral F > 6|09},
iml
the noncentral F being with d.f. (¢ — 1) and (N — k) (¥N: total number of observations),
and 6;’s being the characteristic roots of the matrix =,=75' (positive semidefinite of rank,
say, s = ¢). Similar lower bounds are also readily available for (i) and (ii).

10. Normal Multivariate Analysis and the Orthogonal Group. A. T. JaMEs,
Princeton University.

The relationship of the orthogonal group, and its two coset spaces, the Grassmann and
Stiefel manifolds, to normal multivariate sampling theory is discussed. The use of the
Blaschke differential forms to represent the invariant measures on the two manifolds is
illustrated by a derivation of the well known distribution of the canonical correlation co-
efficients in the null case. The distribution of n independent samples from a normal k-variate
population is transformed into 3 independent distributions, viz., (a) essentially the Wishart
distribution; (b) the distribution of the linear subspace spanned by the sample when
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represented as k vectors in n-space; this is given by the invariant measure in the Grass-
mann manifold; (¢) the invariant distribution of a k¥ X k orthogonal matrix which
determines the orientation of the k vectors in the k-dimensional linear subspace.

11. Exact Formulae in Sequential Analysis for Exponential Distributions. Joran
H. B. KEmpERMAN, Purdue University.

Leta > 0and b > 0. Let X, , X», --- be a sequence of independent random variables
with a common distribution (we assume Pr (X; % 0) > 0). Put Z, = X, + X2 + -+ Xa
and let N be the random variable which takes the valuenif —a < Zy <b(k=1,--- ,n — 1)

and Z, Z borZ, £ —a. Weput p, = Pr(N =n),p, = Pr(N =n,Z, < —a) and ¢, =
Pr (N =n,Z, = b). Let D be an open connected region in the complex z-plane containing
an interval G' on the imaginary axis. We suppose that there exists a function y () which is
analytic in D and which in G takes the value ¢(t) = E(e'X). Then, the function which for
tin G is defined by r.(t) = p.E(e'Z, | N = n) can be extended to an analytic function r,(t)
in D. Moreover, there exists a constant (0 < 6 < 1) such that for each value ¢ in D with
|¢(t) | = 6 we have ZTr.(t) (t)~» = 1 (Wald’s fundamental identity). For the same values
t, this relation may be differentiated term by term with respect to ¢t. This generalization is
used to obtain generating functions for p, and ¢, under certain conditions.

12. A Note on a Generalized Behrens-Fisher Problem. HENRY ScHEFFE, Colum-
bia University.

An exact solution [HENRY ScHEFFE, ‘‘On solutions of the Behrens-Fisher problem, based
on the t-distribution,” Annals of Math. Stat., Vol. 14 (1943), pp. 35-44; ““A note on the
Behrens-Fisher problem,”” Annals of Math. Stat., Vol. 15 (1944), pp. 430-432] of the Behrens-
Fisher problem, based on the ¢-distribution, is generalized to yield confidence intervals
for a linear combination of unknown parameters.

13. Large-Sample Confidence Intervals for Density Function Values at Per-
centage Points. JouNn E. WarsH, China Lake, California.

Let us consider a sample of size n from a population with density function f(z). Let 6,
represent the 100p% point of this population. A class of ‘‘well behaved’’ density functions
is defined. This class seems to contain density functions which are capable of approximating
most practical situations of a continuous type for .05 < p < .95. This paper presents some
approximate confidence intervals for f(8,) for the case where .05 < p = .95 and the density
function is of the ‘““well behaved’’ class. These results hold for values of n which are only
moderately large. The exact value of a confidence coefficient is not known but is determined
within reasonably close limits. An approximate expression is obtained for deciding when n
is sufficiently large for application of these results. The minimum sample sizes required
depend on p and the confidence coefficient; they range from around fifty to several thou-
sand. Tl}e confidence intervals are based on statjstics of the form z[(p + e&)n + C/n] —
2[(p — ) — C+/n], where z[z] = z[integer nearest z] and z[1], - - - , z[n] are the sample values
arranged in increasing order of magnitude. The quantity e is a small but fixed number
depending on p, while C is chosen so that a confidence interval of the desired order of
magnitude is obtained.

14. Sequential Sufficient Statistics. R. R. Bauapur, Delhi, India.

The author defines sequential sufficiency and gives some characterizations of it. Let
Z, T2, + - be a sequence of abstract chance variables having a joint distribution p be-
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longing to a family P of probability distributions. For each m let X () be the space of all

points (z,, 22, -+ , Tm), and let ¢, be a function on X () with arbitrary range such that
tn is a sufficient statistic for P when the sample space is X () . Then ({1, ¢, ---) is said
to be a sequential sufficient statistic if for any event 4 depending only on z; , z2 , -+ - and

Zm the conditional probability of A given tm41 equals the conditional expectation given
tm4+1 of the conditional probability of A given ¢, , (m = 1, 2, --+). The role of sequential
sufficient statistics in sequential decision problems has been described elsewhere [RacHu
Ras Banapur, “On sufficiency and statistical decision functions,” Annals of Math. Stat.,
Vol. 22 (1951), pp. 609-610 (abstract)]. The main result established here is the following. If

Zy, T2, -+ - and z, are independently distributed and their joint distribution is absolutely
continuous with respect to a fixed o-finite measure A\, (p €¢ P; m = 1, 2, -..),
then (¢, ¢, ---) is a sequential sufficient statistic.

15. Some Powerful Rank Order Tests. WassiLy Horrrping, University of
North Carolina.

It is shown that in certain cases there exist nonparametric tests which depend only on
the ranks of the observations and whose power is arbitrarily close to the power of a standard
parametric test if the sample is sufficiently large. For example, let (z1, 1), - , (Tn , Yn)
be a random sample from a continuous bivariate distribution. Let H be the hypothesis
that z and y are independent. Let r; and s: be the respective ranks of z; and y; . Let h,(k)
be the expected value of the kth order statistic in a sample of n observations from a normal
(0, 1) distribution. Let ¢, = Z;%h.(r:)ha(s:). Let k, be the smallest number for which
the probability of | ¢, | > k. does not exceed « when H is true. Suppose that (z, y) has a
bivariate normal distribution with correlation p (which may depend on n), and that the
power of the standard product-moment correlation test of size « tends to a constant 8 < 1
ag n — «. Then the power of the test which rejects H if | ¢, | > k. tends to the same limit
B. Similar results hold for two-sample tests, analysis of variance tests, etc. (Work sponsored
by the Office of Naval Research.)

16. Confidence Bounds for a Set of Means. D. A. S. Fraser, University of
Toronto.

The following problem was suggested to the author by Professor John Tukey: given
2y, , &, are normal and independent with means u; , - -+ , u» and variance ¢2, to find an
upper confidence bound (or confidence interval) for the set of means u;, +-- ,w, . This
paper proves that, subject to mild restrictions on the type of bound, exact 8-level confidence
bounds (or intervals) do not exist (unlessn = 1 or 8 = 0, 1). Incidental to the proof, bounds
are obtained having at least 8 confidence: they are max x; + \;_go for the upper bound and
(min z; + \i_ya-g o, max 2, + \pa_p o) for the interval, where \a is the value exceeded with
probability « by a standardized normal variate.

If the u’s are values of the location parameter for a distribution with density fu(z) =
J(x — p), then a bound (interval) with at least g confidence is obtained by using the above
formulas with ¢ = 1 and with « defined as the a point of the distribution having u = 0.
If this class of distributions is bounded complete with respect to the location parameter
u (using at least all u less than, say, zero), then exact upper bounds to not exist.



