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AN ASYMMETRIC BELL-SHAPED FREQUENCY CURVE

By Fausro I. ToraNzOS
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1. Summary. Frequency functions of the form (1) below including Pearson’s
system as a special case are derived from a generating differential equation (2).
Their properties are discussed, methods of fitting them are suggested, and their
characteristic function is determined.

2. Introduction. We wish to contribute to the study of the frequency functions
of the form!
(1) y = f(z) exp{—3a’ (& — b)* }.

We will realize this purpose by taking as a generating differential equation of our
system of frequency functions

_:l/_' = Qm+l(x)
@ " Pul@)

in which @ is a polynomial of degree m + 1 and P another of degree m. Carrying
out the division of the polynomials of (2) gives

y, — Qm—l(x)
¥ A = ©)
and integrating
— kexp{iazr’ + Bz + o(@)},  o(@) = Q;"Ei’? i

The integral ¢(r) can always be evaluated by decomposing it into integrals of

the forms
dx Mx + N
f(x — a)’ / @+ pz + ¢)° de.

Bearing this in mind, it is easy to show that, if & < 0 and the roots of the de-

nominator are simple, ¥ is equal to the Gauss function multiplied by Pearson’s

functions. When there are multiple roots, exponential factors will appear.
Pearson’s system is a particular case of (3) when @ = 0,8 = 0 and m = 2

1 In this work we generalize and complete the results that we have given in [1].
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8. The case m = 1. The case m = 1 is particularly important. The correspond-
ing differential equation is
Yy _ Az’ + A1z + A4,
—:17 - le + Bo ’

Making a change in the origin of z, we have

@ Y _ we’ + ez + o
Yy X

2
y = kexp{(x + ﬂ)}x“.
a2

This function gives bell-shaped curves when ay < 0, ao > 0. Now putting
a = —d’, m/az = b, ap = ¢, we have

(5) y = ka*exp {—%a’ (x — b)’} .

b

and integrating,

The graph of y is a bell-shaped curve with zeros at the points x; = 0, 2 = =,
if we take as the range of ,0 < x £ «. In this interval y has only one maximum.

This case if of great importance due to its possible applications in distributions
of bell-shaped frequencies with a finite range to the left of the maximum and
extending to infinity on the right. Such happens in the case of the distribution
of relative percentage values of prices and volume, in which the decrease is
limited (from 1009, to 09), whereas the increase is theoretically unlimited
(from 1009, on). In spite of the natural asymmetry, the curve is remarkably
close to the Gauss curve in the vicinity of the maximum.

When a; > 0 and a; < 0 we have a U-shaped curve which has a minimum
near x = b, and which becomes infinite at x = O and z = .

When a; < 0 and a; < 0 we have a curve which has a zero at the point x = o,
a minimum near the origin, and a maximum near = b, and which becomes
infinite at the origin.

When a2 > 0 and ao > 0 the curve has a zero at the point 2 = 0, a maximum
near z = 0, and a minimum near £ = b, and becomes infinite at * = .

4. Determination of the constants. In order to fit the function (5) to an
empirically determined frequency series, we may use the method of moments
_in the same way as Pearson does for his system.

The differential equation (2) can be expressed as

zdy = y(as’ + ax + ao).
Multiplying by x° and integrating from 0 to «, we have
—(8 + l)mc = QgMs42 + ameq + QMg

in which m, are moments of order s. Identifying the functional moments with
the empirical moments and giving successively the values 0, 1, and 2 to s, we
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have a system of three equations with three unknowns from which we can de-
termine a,, a1, @y, and therefore a, b, and c.

We can also determine the constants by the least squares method using the
equation

Iny = %a2x2+alx+aolnx+0’.
The value of C should be adjusted so that it satisfies the condition

f ydxr = 1.
0

5. Determipation of the characteristic function. The characteristic function
o(t) of (5) is defined by

o) =k [o 2’ exp{—1a’(x — b)z‘ + ixt} da.
Multiplying out the square, and putting ab = p, ax = u we have
o) = ka~“t? exp{ —2d’b%} £ ) u° exp { —3u? <p + g) u} du
6) = ka " exp{—3a’8"} Loorum [u” exp{—}u}]

= ka ™ D(c + 1) exp{ —%a’b’ — L(p + it/a)’} D_(oyn [—p — it/al,

writing L for the Laplace transform, and D,(z) for Weber’s function of the
parabolic cylinder [2].

This function can be expressed by Whittaker’s confluent hypergeometric
function, which has been tabulated [2].

To determine the value of K it is sufficient to make ¢ = 0 in (6), giving

2
6(0) =1 = ka ™ 1(c + 1) exp{~%~ofb2 - %} D_(eyny [—p),

and therefore
a(c+1)

2
=_% 1,2p2 1. P _
= T D exp {za b+ 4}/D_(¢+1)[ ab),

and finally

2

¢(t) = exp {%ibt - fﬁ} D_e4ny [—ab — it/al/D_(o41y [—ab].

Now we can determine the moments and other characteristics of the function

(5).
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